 GL-TR-90-0372

AD-A250 355 0
MR Z

AN APPROXTMATE ANALYTICAL MODEL OF SHOCK WAVES FROM
URDERGROUND NUCLEAR EXPLOSIONS

F. K. Lamb
B. W. Callen
J. D. Sullivan

University of Illinois at Urbana-Champaign
Department of Physics

1110 West Green Street

Urbana, Illinois 61801

December 1990

Scientific Report No. 1

Approved for public release; distribution unlimited

GEOPHYSICS LABORATORY

AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE

HANSCOM AIR FORCE BASE, MASSACHUSETTS 01731-5000 ’

92-13 /

05 5 10 024 IMWWWWWM




SPONSORED BY
Defense Advanced Research Projects Agency
Nuclear Monitoring Research Office
ARPA ORDER NO. 5299

MONITORED BY
Phillips Laboratory
Contract F19628-88-K-0040

The views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the U.S. Government.

This technical report has been reviewed and is approved for
publication.

tract Manager
olid Earth Geophysics Branch Solid Earth Geophysigs Branch
Earth Sciences Division Earth Sciences Divisdion

DONALD H. ECKHARDT, Director
Earth Sciences Division

This report has been reviewed by the ESD Public Affairs Office
(PA) and is releasable to the National Technical Information
Service (NTIS).

Qualified requestors may obtain additional copies from the Defense
Technical Information Center. All others should apply to the
National Technical Information Service.

If your address has changed, or if you wish to be removed from the
mailing list, or if the addressee is no longer employed by your
organization, please notify PL/IMA, Hanscom AFB, MA 01731-5000.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations
or notices on a specific document requires that it be returned.




Form Approved

REPORT DOCUMENTATION PAGE OMB No 0704-0188

CmaAted U 4o s D Tonr Do esnorue s iuding the me 101 resviewing instrus aes. sear nen7 e sTirg data sources

" s e S T T rmMAL £ A Yend (OMMPNTs 1RGArAING this burden et ale S Aty Jther 4spect af thy
e Sy Burea 1A APINGIR eacGuat T ey L rocterate forintormation Operati sy and encits 1eis settecson
Lo eay e e e S A g (e 0 et M gedGe ML ang Budgel ©aperacrs Redurtion Project (0704-0188) Washingt o, ( /05C3
1 AGENCY USE ONLY (leave blank) |2 REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1990 Scientific Report #1
4 TITLE AND SUBTITLE 5. FUNDING NUMBERS
An Approximate Analvtical Model of Shock Waves from Contract
Underground Nuclear Explosions F19628-88-K-0040
PE 62714E
6. AUTHOR(S) PR 8A10
F. K. Lamb TA DA
B. W. Callen WU AL
J. D. Sullivan
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. gggg(;?nﬁsa&zGAMZAnon
Imiversity of Tllinois at Urbana-Champaign P/Q1/4/46
Department of Physics
1110 West Green Street
Urbana, II. 61801
3 SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. ‘s‘l;(gmiek’;:gémosgggé:c
Geophvsics Laboratory
Hanscom AFB, MA 01731-5000 CL-TR-20-0372
Contract Manager: James Lewkowicz/LWH

11, SUPPLEMENTARY NOTES
Sul ted to Journal of Ceophysical Research

125 DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public releases distribucion unlimited

13. ABSTRACT (Maxxmum 200 words)

We discuss an approximate analvtical model for the hydrodynamic evolution of the
shock front produced bv an explosion in a homogeneous medium. The model assumes a
particular relation between the energv of the explosion, the density of the medium
into which the shock wave is expanding, and the particle speed immediately behind
the shock front. The assumed relation is exact at earlyv times, when the shock wave
is strong and self-similar. Comparison with numerical simulations shows that the
relation remains approximatelv valid even at later times, when the shock wave is
neither strong nor self-similar. The model allows one to investigate how the
evolution of the shock wave is influenced by the properties of the ambient medium.
The shock front radius vs. time curves predicted by the model agree well with
numerical simulations of explosions in quartz and wet tuff and with data from four
underground nuclear tests conducted in granite, basalt, and wet tuff when the

bt ricial vields are assumed. Fits of the model to data from the hvdrodvnamic phase
of these tests give vields that are within 87 of the official vields.

15 NUMBER OF PAGES

14. SUBJECT TERMS
74

hreshold Test Ban Treaty, hvdrodvnamic methods, shock waves,

underground nuelear explosions 16. PRICE CODE

17. SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
I'melassiticd tinclassitied I'nelassified SAR
NGAE PRS0 O M) 500 Standard Faorm 298 (Rev 2 89)

Domes hed Dy SNSH ST SXG R
PXLIA R




Contents
1. Introduction 1
2. Model 4
Assumptions 4
Predicted Radius vs. Time 6
3. Comparisons with Analytical Models and Numerical Simulations 10
Expression for f 10
Assessment of Particle-Speed Predictions 12
Assessment of Radius vs. Time Predictions 13
4. Comparisons with Field Data 16
Radius vs. Time Curves 17
Yield Estimation 20
5.Summary and Conclusions 25
Appendix: Comparison with Heusinkveld’s Model 27
Acknowledgements 30
References 32
Figure Captions and Tables 36
L_{ccession Yor
NTIS GRA&I
DTIC Tas 0
Une&ancunced 0
Justirteation
By ___
| Did<ribution/

‘_Avai}abil.tty Ccdea
Avail and/op
Dist Speoial

1id . ‘
o




1. INTRODUCTION

Shock wave methods have long been used to estimate the yields of nuclear explosions,
both in the atmosphere (see, for example, Sedov [1946]; Taylor [1950b]) and underground
(sce, for example, Johnson, Higgins, and Violet {1959]; Nuckolls {1959]). All such methods
are based on the fact that the strength of the shock wave produced by an explosion
increases with the yield, all other things being equal. As a result, the peak pressure,
peak density, and shock speed at a given radius all increase monotonically with the yield.
Hence, by comparing measurements of these quantities with the values predicted by a
model of the evolution of the shock wave in the relevant ambient medium, the explosive
vield can be estimated. Shock wave methods for determining the yields of underground
miclear explosions are of increasing interest as one means of monitoring limitations on
underground nuclear testing. These methods were first introduced as a treaty-monitoring
tool in the original Protocol of the Peaceful Nuclear Explosions Treaty of 1976 [U. S. Arms
Control and Disarmament Agency, 1990a]. Hydrodynamic methods were explored further
in a joint U.S.-U.S.S.R. verification experiment [U. S. Department of State, 1988] and have
now been incorporated in new protocols to the Threshold Test Ban and Peaceful Nuclear
Explosions Treaties [U. S. Arms Control and Disarmament Agency, 1990b].

Most shock wave algorithms for estumating the yieids of underground nuclear
explosions have focused on the so-called hydrodynamic phase (see Lamb [1988]), because
the evolution of the shock wave during this phase is relatively simple. The energy released
by a nuclear explosion initially emerges from the nuclear device as nuclear radiation, fission
fragments, and thermal electromagnetic radiation (see Glasstone and Dolan {1977], pp. 12-
25 and 61-63). At the very earliest times, energy is carried outward by the expanding
weapon debris and radiation. As this debris and radiation interact with the surrounding
medium, a strong sho 'k wave forms and begins to expand. The evolution of the explosion
during this phase can be followed using the equations of hydrodynamics and radiation
transport. However, within ~10-100 us, depending on the yield and the composition
and distribution of matter surrounding the nuclear charge, the outward flow of energy via
radiation becomes unimportant and the explosion can be described using the equations
of hydrodynamics alone. At this point the explosion enters the (purely) hydrodynamic
phase. The radial stress produced by the shock wave at the beginning of this phase greatly
exceeds the critical stress at which the surrounding rock becomes plastic, so that to a
good approximation the shocked medium can be treated as a fluid. As the shock wave
expands, it weakens. Eventually. the strength of the rock can no longer be neglected, the
fluid approximation fails, and the hydrodynamic phase ends. Yield estimation methods
that use measurements made during the hydrodynamic phase are called hydrodynamic
methodas.




All hydrodynamic methods require a model of the evolution of the shock wave. Models
in recent or current use range in sophistication from an empirical power-law formula that
supposes the evolution is completely independent of the medium (Bass and Larsen [1977];
see also Heusinkveld [1982]; Lamb [1988]) to multi-dimensional numerical simulations
based on detailed equations of state (for recent examples of one-dimensional simulations,
see Moss [1988]; King et al. [1989]; Moran and Goldwire {1990]). When detailed equation of
state data are available, state-of-the-art numerical simulations are expected to be highly
accurate, at least for spherically-symmetric, tamped explosions in homogeneous media.
Nevertheless, a simple analytical model of the shock wave produced by such explosions
that allows one to determine how the evolution depends on the Hugoniot and the yield is
useful for several reasons. First, detailed equations of state are available only for a few
geologic media. Second, large codes can be run for only a limited number of cases. Third
and most importantly, an analytical model is more convenient than numerical simulations
for analyzing how the evolution is affected by the properties of the ambient medium.

This is the first of several papers in which we investigate the evolution of the shock
wave produced by a spherically-symmetric explosion in a homogeneous medium during the
hydrodynamic phase. Such a shock wave is necessarily spherically symmetric. Here we
investigate a simple analytical model. In this model, the compression of the medium at
the shock front is treated exactly, using the Rankine-Hugoniot jump conditions and the
Hugoniot of the ambient medium. The rarefaction of the shocked fluid that occurs as the
shock front advances is treated approximately, via an ansatz relating the specific kinetic
energy of the fluid just behind the shock front to the mean specific energy within the
shocked volume. This model was proposed by Lamb [1987], who showed that it is exact
for strong. self-similar shock waves. Lamb [1987] also made a preliminary comparison of
the shock front radius vs. time curves predicted by the model with data from several
underground nuclear explosions and numerical simulations. The model was proposed
independently by Moss [1988], who compared its predictions with particle speed data
from underground nuclear explosions and numerical simulations. Their results showed
that the model provides a useful approximate description of the shock wave evolution
throughout the hydrodynamic phase. The model is similar in spirit to one proposed earlier
by Heusinkveld [1979, 1982], but is more satisfactory theoretically and appears to provide
a more accurate description of underground nuclear explosions, as shown in an appendix.

In § 2 we first discuss the assumptions on which the model is based, including the
ansatz relating the specific kinetic energy of the fluid just behind the shock front to the
mean specific energy within the shocked volume. Next, we combine the ansatz with the
Hugoniot of the ambient medium expressed as a relation between the shock speed D and
the post-shock particle speed u) to obtain a first-order ordinary differential equation that

describes the motion of the shock front. We show that solutions of this equation of motion
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can be expressed in terms of simple analytical functions when the D vs. u, relation is
piecewise-linear. Since an arbitrary D vs. u, relation can be represented to any desired
accuracy by an appropriate piccewise-linear relation, the radius vs. time predictions of the
model for an arbitrary Hugoniot can always be expressed as a sum of simple analytical
functions. Alternatively, the equation of motion can be integrated nuinerically to find the
model predictions for any prescribed Hugoniot. In practice, the latter approach is often
more convenient. The model also gives the shock speed, post-shock density, post-shock
particle speed, and post-shock pressure as functions of the shock front radius or the elapsed
time, the yield of the explosion, and the Hugoniot of the ambient medium.

In § 3 we assess the accuracy of the model. We first show that the ansatz is exact
for a shock wave that is strong and self-similar. We then compare this ansatz with results
from numerical simulations, and find that it is also remarkably accurate for spherical shock
waves that are neither strong nor self-similar. Finally, we compare the radius vs. time and
particle velocity vs. radius curves predicted by the model with the corresponding curves
obtained from numerical simulations of underground nuclear explosions. We conclude that
the model with point-source boundary conditions provides a remarkably good description
of the spherically-symmetric shock waves produced by such explosions.

In § 4 we show that the radius vs. time curves given by the analytical model of § 2
provide an excellent description of the field data from four underground nuclear tests
conducted by the United States, despite the fact that these tests are not point explosions
and that the ambient media may be nonuniform. In fact, the model sometimes describes
the data accurately even well beyond the hydrodynamic phase of the explosion. When the
model and the Hugoniots of § 3 and § 4 are used to estimate yields using data from the
hydrodynamic phase of these four nuclear explosions, the resulting estimates are within
8% of the official yields. For comparison, when the numerical simulations described in
§ 3 are fitted to the same data, the resulting yield estimates are within 9% of the official
yields. Our lack of knowledge of the geometry of these tests, of the way in which the data
was gathered, and, in the case of one explosion, of the medium in which the explosion
occurred, make it difficult to assess whether the relatively small differences between the
varions yield estumates are due to errors in the radius vs. time data, departures from
spherical symmetry due to asphiericity of the source and/or inhomogeneity of the ambient
medinm, uncertainties in the vield staudard. or inadequacies of the models. The U. S.
Department of State [1936a.b] has claimed that hydrodynamic methods are accurate to
within 15% (at the 95% confidence level) of radiochemical yield estimates for tests with
vields greater than 50 kt in the geologic me Jia found at the Nevada Test Site (see also
[". S Congress, Office of Technology Assessment [1988]; Lamb [1988]). Thus, the analytical
model of § 2 appears to Le competitive with other models for purposes of yield estimation.

A preliminary account of this work has been given by Callen et al. [1990b).




2. MODEL

In this section, we first present the fundamental assumptions of the model and derive
the resulting equation of motion for the shock front. We then solve this equation of motion
and discuss the scalings allowed by the shock-front radius vs. time curve predicted by the
model.

Assumptions

The model assumes that the shock wave 1s purely hydrodynamic, i.e., that transport
of energy via radiation is negligible and that the stress produred by the shock wave is much
larger than the critical stress at which the medium becomes plastic. The model assumes
further that the medium in which the shock wave 1s propagating is homogeneous, and that
the shock wave is spherically symmetric at the time the model first applies. The shock
wave therefore remains spherically symmetric. As the shock wave expands and weakens,
the strength of the ambient medium eventually becomes important. At this point the
model is no longer applicable.

Part of the energy released in any nuclear explosion escapes without contributing to
the energy of the shock wave (see Glasstone and Dolan {1977], pp. 12-13). Thus, the yield
measured by hydrodynamic methods is less than the total energy released in the explosion.
Here we are concerned exclusively with the hydrodynamic phase of the explosion, and hence
the yield W to which we refer is the so-called hydrodynamic yield, namely, the energy that
contributes to the formation and evolution of the shock wave. The mode]l assumes that
W is constant in time. This is expected to be an excellent approximation during the
hydrodynamic phase.

The Rankine-Hugoniot jump conditions express conservation of mass, momentum, and
energy across tic shock front (see, for example, Zel'dovich and Raizer {1967, Chapter I]).
The model is based on approximate forms of the jummp conditions, which are nevertheless
extremely accuraie under ihe conditions of interest. The model neglects the pressure pg of
the unshocked ambient medium in comparison with the pressure p; of the fluid just behind
the shock front. Since p; i1s 21 GPa for the times and shock radii of interest, whereas pg 1s
~20 MPa, neglecting pg is an excellent approximation. The model also neglects the specific
internal energy € of the unshocked medium in comparison with the specific internal energy
21 of the fluid just behind the shock front. This approximation is also highly accurate,
since £ 1s greater than g for post-shock particle speeds u, greater than about 190 m/s,
and u, 1s 21 km/s for the times and shock front radii of interest.

With these approximations. the Rankine-Hugoniot equations, written in the frame in

which the nnshocked material is at rest, become

pilD —up) = po D, (1)




poDuy = py, (2)

. (1 1)
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where D = dR/dt is the speed of the shock front, and py and p; are the densities just

and

f=61, (3)
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ahead of and just behind the front. Equation (3) shows that the energy pi1(1/p0 — 1/p1)
acquired by a unit mass of the medium as a result of shock compression is divided equally
between kinetic energy of bulk motion and the increase in the specific internal energy. The

shock speed D is related to the post-shock particle speed u; by the Hugoniot
D = D(u,), (4)

which depends on the medium.
Without loss of generality, the specific kinetic energy of the fluid just behind the

shock front can be related to the mean specific energy within the shocked volume via the

W
ul = f <m) ) (5)

where f is a dimensionless factor that generally depends on the equation of state of the

expression

ambient medium and the radius of the shock front. 4 key assumption of the model is that
f 13 independent of the shock front radius R for all shock fromt radii of interest. We assess
the validity of this ansatz in the next section, where we show that it is exact when the
shock wave is strong and is approximately valid throughout the hydrodynamic phase of
the explosion.

The model treats the compression of the ambient medium at the shock front exactly,
since the jump conditions and the Hugoniot are correctly incorporated. On the other hand,
the rarefaction that occurs as a shocked fluid element 1s left behind by the advancing shock
front is treated only indirectly, and approximately, via the parameter f. The value of
this parameter depends on the density, velocity, and specific internal energy distributions
within the shocked volume, distributions that would be determined in a full hydrodynamic
calculation of the structure and evolution of the shock wave. In order to carry out such
a calculation, knowledge of the equation of state off the Hugoniot (i.e., along the release
adiabat) is required. This requirement is sidestepped in the model by assuming that f is
independent of R, The parameter f is then the only free parameter in the model.

The best value of f to use for explostons in a given rock can be determined by fitting
the post-shock particle-speed relation (5) (or the relations for the shock speed, shock front
radius, and post-shock pressure that follow from it) to data from numerical simulations or

data from actual underground explosions in that rock. Ouce f is determined, the model




provides a description of the properties and evolution of the shock wave produced by an

explosion of any yield in the same medium.

Predicted Radsus vs. Time

With the assumption that f is independent of R, the right side of equation (4) becomes
a known function of R and hence equation (4) becomes a first-order ordinary differential
equation for R. This equation can be integrated directly to determine the radius of the
shock front as a function of time. Solutions of the shock front equation of motion can
be expressed in terms of simple analytical functions when the shock speed is a linear or
piecewise-linear function of the post-shock particle speed, as we now show.

Linear Hugoniots.—Experimental studies of shock waves in solids (see, for example,
Zel’dovich and Raizer [1967], Chapter XI) have shown that for many materials, the
relation between the speed D of a shock front and the particle speed u; just behind it

is approximately linear for large u,, that 1s
D(uy) = A+ Buy, (6)

for some constants A and B. In general, the D(u,) relation deviates from this high-speed
relation as the post-shock particle speed falls. If we assume for the moment that D(u;)
can be adequately represented by a single linear relation of the form (6) over the full range
of u; that is of interest, we can obtain an interesting and useful analytical solution for the
motion of the shock front.

First, for convenience we introduce the dimensionless variables

r=R/L and r=t/T, (7
where A
3fWB%\? L
L = (——47rp0.47) and T = 1 (8)

The characteristic length L and the characteristic time T depend on the medium through
the constants pg, A, B, and f, and scale as the cube root of the yield W. Making use of

relation {5) and the characteristic length L, the equation (6) becomes

2
_dR L\?

This equation shows that the length L is the radius that separates the strong shock regime,

(9)

where D ~ R%/% from the low-pressure plastic wave regime, where D = const. In non-

dr 1 3/
;; =1+ (}-) . (10)

dimensional forin. equation (9) is




The general solution of equation (10} is
T — 19 = h(z) = h(zg), (11)

where 70 = to/T and 749 = Ro/L. Here Ry is the radius of the shock front at ¢o, the time
at which the evolution of the shock wave is first described by the model. The function

h{z) in equation (11) is given by

= 1 r+2yr+1y 2 fr _1(2\/5—1>]
h(r)= +31n<—-———-———1_ﬁ+1) \/5[6+ta.n —————-—\/5 . (12)

For a poiut explosion, g = 0 at 7y = 0. For such explosions, the function r(zg, 79, 7)

defined unplicitly by equation (11) becomes, at small radii (z < 1),
x(r) = (5/2)*/°r%7 (13)

which is the well-known temporal behavior of a strong, self-similar shock wave produced

by a point explosion [Sedov, 1959]. At large radii (x > 1), this function becomes
r{r) =~ const. + 7, (14)

which describes a constant-speed plastic wave (this is sometimes referred to as a bulk
wave). Equation (11) thus provides an interpolation between the strong shock wave and
the low-pressure plastic wave regimes.

Within the assumptions of the inodel, an ezplosion is completely defined by its yield
" and the ambient medium, which in turn is completely defined by the quantities pg,
A, B, and f. The shock front radius vs. time curve for an explosion of any yield in any

medinum can be generated from the function z(xg, 70, 7) by using the relation

Ry to t
ty=Lzx|—,=.=1] - 15
Ry = Lo (2 7) (15)
For a point explosion. this simplifies to

Rit) = L(t/T). (16)

The radius vs. time cvrve (15) satisfies a scaling involving the yield W and the
properties A, B, and p¢ of the ambient medium. In particular, relation (15) implies
that if the radius vs. time curve for explosion 1 is known, then the radius vs. time curve
for a second explosion j can be generated, provided that pg, A, B, f, and W are known

for both explosions and the initial radii and times Ro,. toq, Ro,, and Ty, satisfy

Ry, =1(L,/L,) Ry, and to, = (T,/T,) To; . (17)




Under these conditions, the radius vs. time curve R;(t) for ezplosion j is given in terms

of the curve Ri(t) for ezplosion 1 by the similarity transformation
Ry(t) = (L;/L:) R(Tit/T;). (18)

The required scaling (17) is satisfied trivially if both explosions are point explosions. The
similarity transformation (18) can be used to shed light on the physical origin of the so-
called “insensitive interval” and to develop optimal weighting schemes for radius vs. time
data (Lamb, et al. {1991}; for preliminary accounts, see Lamb et al. [1989] or Callen et
al. [1990a]).

A special case of equation (18) that we use in the next sections is the case of explosions
in identical ambient media. According to equation (18), the radius vs. time curves of two

such explosions satisfy
Ri(t) = (W, /W) R W, Pyyw !, (19)
provided that
Roy = (W,/W,)'* Ry, and  to, = (W,/W,)'* Ty,. (20)

In other words, the radius vs. time curves scale with the cube-root of the yield if the initial
radii and times scale with the cube-root of the yield. This result illustrates the more
general point that cube-root scaling does not follow from the hydrodynamic equations
and the jump conditions alone; in addition, the relevant properties of the hydrodynamnic
source must scale [Lamb et al., 1991b]. The required scaling of the source is again satisfied
trivially if both explosions are point explosions. This is consistent with the known validity
of cube-root scaling during the hydrodynamic phase for point explosions in uniform media
(King et al. [1989]; Lamb et al. [1991b]).

So far, we have discussed the predictions of the model for the post-shock particle speed
uy as a function of R (eq. [5]), shock speed D as a fuuction of R (eq. [9)), and shock front
radius R as a function of time (eq. {15]). The model also predicts the evolution of other
quantities of interest, including the mass density, specific internal energy, and pressure
immediately behind the shock front. Expressions for these quantities can be obtained
from the jump conditions (1), (2). and (3) by substituting expressions (5) and (9) for u,

and D.

The predicted post-shock mass density 1s

RS
pl:(‘rw/.1+1_B__,>P()w (31)




where r = R/L is the dimensionless shock front radius. For ¢ < 1, p; = (B/(B — 1)]po,
which is the limiting value for a strong shock wave. For large radii, p, approaches pg, as

it must. The predicted post-shock specific internal energy 1s

B At 1 (22
1T opT )
while the predicted post-shock pressure py is
[)0.42 1 1
=g <I3/2 =) (23)

For small radii (z < 1), p; = po(A?/B) %, whereas for large radii, p, = (poA%/B) =3/

Arbitrary Hugoniots.— -Although for many materials the Hugoniot at high particle
speeds (or equivalently, at high pressures) 1s well-described by a single linear relation of
the form (6), the Hugoniot at lower particle speeds usually deviates from the high-speed
relation. If the linear relation that is valid at high particle speeds could be extrapolated
to small uy, the constant A would correspond to the low-pressure plastic wave speed cq.
However, such an extrapolation usually i1s not valid. In granite, for example, A4 is about
3 kin/s, whereas ¢y is about 4 kin/s.

Even if the Hugouniot is not lincar over the range of u, of irterest, it can still be
represented to any desired ~ccuracy by a sequence of piccewise-linear segments. In this
case, equation (10) still describes the motion of the shock front within each segment of
the Hugoniot, but at each break in D(w;) new Hugouiot paramecters A and B must be
introduced. While it is possible to write the radius vs. time curve for a piecewise-linear
Hugoniot with an arbitrary number of segments as a sum of standard functions, in practice
it is more convenient to treat this case by integrating the shock front equation of motion (9)
numerically.

In integrating equation (9), we handled the transitions between different linear
segments of the Hugoniot as follows. The transitions occur at a sequence of fixed points
in uy, which, for a given yield, are related to a sequence of radii by equation (5). After
each time step, we computed the new value of the particle speed from equation (5) and
compared it with the particle speed uf at the junction of the (i — 1)st segment of the
Hugoniot and the ith segment. When the newly computed value of u; dropped below u/,
in the next integration step we replaced the constants 4,_; and B,_; that described the
previous segment of the Hugoniot with the constants A, and B, that described the current
segment. The transition points between the diffecent linear segments of the Hugoniot are
not readily apparent in the resulting radins vs. time curve, because steps occur only in the
recond derwative of the shock front radius with respect to time; both R(t) and its first
derivative are continuons.

The radins vs. time curve predicted by the model for an arbitrary Hugoniot satisfies the

cube-root sealing relation (19, provided that the initial conditions satisfy equation (20).

el




3. COMPARISONS WITH ANALYTICAL MODELS
AND NUMERICAL SIMULATIONS
In this section we assess the accuracy of the model. We first derive a general expression
for the dimensionless factor f, and show that the constancy of f is exact for a point
explosion in a homogeneous medium when the shock wave is strong.! We then explore the
validity of relation (5) with f constant when the shock is no longer strong, by comparing
predictions of the model with numerical simulations of underground nuclear explosions in

quartz and wet tuff.

Ezpression for f
In order to evaluate the accuracy of the ansatz that f is constant, we make use of
the assumption that the hydrodynamic energy of the matter interior to the shock front is

conserved, that is
R(t)
W = 47r/ p(r,t) [5' u2(r,t) + elr, t)] r?dr = const. (24)
0

To turn equation (24) into a relationship between u; and W, we first introduce the time-
dependent dimensionless radius £ = r/R(t). Then, the distributions p(r,t), u(r,t), and

g(r,t) inside the shocked volume may be rewritten, without loss of generality, as

p(rt) = g(€&,t) pi(t), u(r,t)=w(f,t)u,(t), and e(r,t)=e(£ t)e(t), (25)

where py(t), ui(t), and €,(t) are the mass density, particle speed, and specific internal
energy just behind the shock front (where £ = 1). It will be convenient to express the
post-shock mass density p; in terms of the pre-shock density pg via the dimensionless

factor
k(t) = pi/po. (26)

' A strong shock wave is one in which the speed of the shock front is much larger

than the speed of sound in the undisturbed rock, the pressure behind the shock front is
predominantly thermal, and the ratio of the density immediately behind the shock front to
the density ahead of the front is close to its limiting value. Such shock waves have special
properties. In particular, the shock wave produced by a point explosion is self-similar while
it remains strong (see Zel'dovich and Raizer {1967], Chapters 1 and XII). The condition
that a shock wave be strong is net the same as the condition that the shock produce a
radial stress greater than the enitical stress at which the rock becomes plastic. The latter is
the hydrodynamic condition, which is usually satisfied for some time after the shock wave

is no longer strong (see § 4).
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Using equations (25) and (26), equation {24) can be rewritten as

314

i
ey rc(t)/o g(&, 1) [Fur’ () w (€, t) + er(t) e(€,t)] €2 dE

. (27)
= %“112(t) K(t)/ g(svt) [11’2(€vt) + C(f’t)] 62 d€ ’

0
where in the last line we have used equation (3). Comparison of equation (27) with the

ansatz (5) gives a useful expression for the dimensionless factor f, namely,
g I ) \

- gh-(t)/o g(€.) [w(€,1) + (€, 1)] €7 de. (28)

Equation (28) is merely a re-expression of equation (24) and therefore is completely general.
It shows that f(t) depends on the density, velocity, and specific internal energy distributions
within the shocked volume at time t. We now investigate the value of f(t) and its variation
with time.

Strong shock interval.-—Consider for simplicity a point explosion during the interval
when the shock wave i1s strong. As noted above, during this interval the ratio of the
density p; behind the shock front to the density py ahead of the shock front approaches a
limiting value (sce Zzel'dovich and Raizer [1967], p. 708). Thus, x is independent of time
and independent of W in this interval. Moreover, during the strong shock interval the
shock wave produced by a point explosion is self-similar. Therefore, the profiles ¢, w, and
¢ are also independent of time and independent of W. Thus, f is independent of time and
independent of W in the strong shock interval.

For a medium that is adequately described by a Mie-Griineisen equation of state with a
constant Grineisen coeflicient, the value of f in the strong shock interval can be calculated
by comparison with the solution for a self-similar shock wave produced by a strong point
explosion [Sedov, 1946, 1959; Taylor, 1950a] as follows.

The Mie-Grineisen equation of state assumes that the total pressure p is the sum of
two parts: a thermal pressure pp, which depends on the temperature and density, and a

cold pressure p., which depends ouly on the density, that is,

p=prip.T)+plp) = pler + plp), (29)

where e is the thermal compornent of the internal energy and I is the Griineisen coefficient
(see. for example, Zel'dovich and Raizer {1967], p. 697). The thermal pressure p increases
with the strength of the shock, whereas the cold pressure p, 1s bounded, since p approaches
a limiting value. Thus, in the strong shock interval the cold pressure term in equation (29)
can be neglected (see Zel'dovich and Raizer [1967), pp. 708-709). If in addition the

11




Grineisen coefficient is constant, this equation of state has the form considered by Sedov
and Taylor in their solution.

The dependence of f on I' in the strong shock interval can be calculated from
equation (28) using Sedov’s solution for the functions «, ¢g(£), w(€), and e(£) (see, for
example, Landau and Lifshitz (1987], pp. 403-406, for explicit expressions for &, g, w, and
e). The result is shown in Figure 1. When the shock wave is no longer strong, or when
it never was strong, a value of f different from that given by Figure 1 may give a more
accurate description of the shock wave evolution.

Actual nuclear tests are not point explosions but are generated by aspherical sources
of finite size. In part to give the shock wave time to become more spherically symmetric,
radius vs. time measurements are usually made at scaled radii ~2-5 m/kt!/? for tests with
yields ~150 kt (at larger radii, the hydrodynamic approximation is no longer valid). At
these radii, the strong-shock expression for f shown in Figure 1 is no longer accurate. As
we now show, f = 0.53 appears to give a relatively accurate description of the evolution
of shock waves in granite and wet tuff during the interval in radius where measurements

are usually made.

Assessment of Particle-Speed Predictions

The behavior of f when the shock wave is not strong can be investigated by comparing
the predictions of the ansatz (5) with shock wave data from actual and simulated nuclear
explosions.

Lamb [1987] showed that the radius vs. time curves predicted by equations (4) and (5)
agree fairly well with radius vs. time data from a numerical simulation of a nuclear explosion
in wet tuff by the P-15 (CORRTEX) Group at Los Alamos National Laboratory and with
field data from the Piledriver and Cannikin nuclear tests, which were conducted in granite
and basalt, respectively. A more detailed comparison of the radius vs. time curves predicted
by the model with data from numerical simulations is presented at the end of this section.
The predictions of the model are compared with field data from underground nuclear tests
in § 4.

A more direct test of the ansatz (5) can be made by comparing the post-shock particle
speed 1t predicts with post-shock particle speed data from nuclear tests and numerical
simulations. Perret and Bass (1975] have summarized a large collection of particle speed
data obtained from underground nuclear explosions. Moss [1988] has shown that these
data agree fairly well with the scaling u; o« R73/2 predicted by relation (5). for particle
speeds 2 1 km/s. These data appear roughly consistent with this scaling even for particle
speeds as low as ~107* km/s. Moss [1988] also compared the ansctz (5) with post-shock
particle speeds from his numerical simulations of 125 kt nuclear explosions in quartz and

wet tuff. He found that for particle speeds between 1 and 30 km/s, both the radius and the
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density dependence of his granite and wet tuff data are accurately described by relation (5)
with f = 0.53.

To assess the ansatz (3) further, we compare it with post-shock particle speed data
obtained from simulations of 100 kt nuclear explosions in quartz and wet tuff. These
simulations were performed by the Los Alamos CORRTEX group using the radiation
hydrocode deseribed by Cox et al. [1966]. In order to compare equation (3) with the
simulations, we have had to reconstruet the post-shock particle speeds using appropriate
Hugoniots and the radins vs. time eurves obtained from the simulations. The radins
vs. tiune curves were kindly provided to us by D. Eilers (private communication, 1987).

The reconstruction process can distort the particle speed curve if the Hugoniot used
in the reconstruction differs from the Hugoniot used in the simulation. Throughout this
paper, when modeling shock waves in quartz we use the Hugoniot data compiled by King
et al. [1989] from several sources [Chung and Simmons, 1969; Al'tshuler et al., 1977:
Wackerle, 1962; McQueen et al. 1977; Ragan, 1984]. These data are shown in Figure 2.
An expanded view of the low - section of the data is shown in Figure 3. When comparing
with the quartz simulations of the Los Alamos CORRTEX group, we use a piecewise-linear
representation of the data compiled by Ring et al., using their interpolation at low post-
shock particle speeds (indicated by the dash-dotted line in Figure 3). In modeling shock
waves i wet tuff, we use the piecewise-linear Hugoniot given by King et al. [1989], which
is shown in Figure 4. The light solid curves in Figures 3 and 4 show where the post-shock
pressure calculated from the jump condition (2) is 15 GPa. For the reasons discussed in
§ 4, we adopt this pressure as marking the end of the hydrodynamic phase. We belicve
these Hugoniots are very close to the Hugoniots used in the numerical simulations, but we
cannot rule out the possibility of some distortion.

Figure 5 shows that relation (5) with f = 0.53 provides an excellent description of the
post-shock particle speed data from the simulated explosion in quartz, for particle speeds
from ~30 down to ~0.6 kuu/s. Figure 6 shows that relation (3) with f = 0.53 also provides
an excellent description of the post-shock particle speed data from the simulated explosion
in wet tuff. for particle speeds from ~40 down to ~1 kin/s.

On the basis of these comparisons, we conclude that relation (5) with f = 0.53
provides a good deseription of the relation between the vield. the mass density of the
ambient medinm, the radius of the shock front, and the post-shock particle speed during
the hydrodynamic phase of the explosion. inclading times when the shock wave is no longer

strong.

Assessment of Radins vs. Time Predictions
In order to assess further the accuracy of the model, we compare the radins vs. time

curves that it predicts with the corresponding curves predicted by numerical simulations
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of underground nuclear explosions in quartz and wet tuff. We set f equal to 0.53 and use
point-source boundary conditions when solving equation (10) here and throughout this
paper.

Quartz.—As described above, the Los Alamos CORRTEX Group (D. Eilers et al.) has
simulated a 100 kt nuclear explosion in quartz. We compared the present model with this
simulation, using both a linear description of the quartz Hugoniot and the more complete
piecewise-linear description discussed above. These Hugoniots are indicated respectively
by the dashed and dash-dotted lines in Figures 2 and 3. The mass density used in the
model was the same as that used in the simulation, namely 2650 kg/m?>.

Figure 7 compares the radii predicted by the model with the radii predicted by the
simulation. The top panel shows these radii as functions of time, whereas the bottom

panel displays the relative difference

b = (Izdala(t) - Rmndvl(’))
- Izdala(i)

(30)

between these radii. The dashed curve is the value of & that results from using the linear
description of the Hugoniot in the analytical model, whereas the dash-dotted curve is the
result given by using the piecewise-linear Hugoniot. When the linear approximation to the
Hugoniot is used, the absolute value of 4 is less than 5% before 0.7 ms but rises to ~12% by
~5 ms. As expected from the behavior of the actual Hugoniot, the radii predicted by the
linear approximation are systematically too large at late times. When the more accurate
piecewise-linear Hugoniot is used, é is never more than 1.8%.

Wet tuff.- -The Los Alamos CORRTEX Group {D. Eilers et al.) has also simulated a
100 kt nuclear explosion in saturated wet tuff. We compared the present model with this
simulation. again using both a linear description of the wet tuff Hugoniot and the more
complete piecewise-linear description of King et al. {1989]. These Hugoniots are indicated
respectively by the dashed and solid lines in Figure 4. The mass density used in the model
was the same as that used in the simulation. namely 1950 kg/m?.

Figure 8 compares the radii predicted by the analytical model with the radii predicted
by the simulation. When the linear approximation to the Hugoniot 1s used, the absolute
value of & is always less than 9% Again, as expected from the behavior of the actual
Hugoniot, the radii predicted by the linear approximation are systematically too small
at late times. When the more accurate piecewise-linear Hugoniot is used, the relative
difference 1s never more than 6% and is less than 2% after 0.6 ms.

Discusston. - -These comparisons of the radius vs. time eurves predicted by the model
with the radins vs time curves predicted by numerical simulations confirm the earlier
assessment, which was based on comparison of peak particle velocities, that the model

with f set equal to 0.53 provides an exeellent deseription of spherically-symmetric shock
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waves from underground nuclear explosions in granite and wet tuff, during much of the
hydrodynamic phase. Therefore, we shall adopt this value when comparing the model with

field data from underground nuclear explosions.




4. COMPARISONS WITH FIELD DATA

In this section we use radius vs. time data from four underground nuclear tests
conducted by the United States to assess the usefulness of the analytical model. The
four data sets we consider are from the nuclear tests code-named Piledriver, Cannikin, and
Chiberta, and from a test that we call NTS-X, since its official name remains classified.
The radius vs. time data from the first three tests were obtained using the SLIFER
techuique [Heusinkveld and Holzer, 1964]. These data were kindly provided to us by
M. Heusinkveld [1986; 1987, private communication]. The radius vs. time data from the
test we call NTS-X were taken from Heusinkveld [1979]; the measurement technique used
to obtain these data was not reported. To our knowledge, no radius vs. time measurements
made using the more recently developed CORRTEX technique [Virchow et al., 1980] are
publicly available.

Any attempt to compare models or simulations of spherically-symmetric explosions in
uniform media with data from underground muclear tests must confront at the outset the
fact that the shock wave produced by such a test evolves from an aspherical source of finite
size into a medium that is at least somewhat inhomogenecous (see Lamb [1988] and Lamb et
al. [1991¢]). In comparing the predictions of the model of § 2 with data from nuclear tests,
we adopt the particular solution that correspouds to a point explosion. For this solution,
cube-root scaling is exact. We also assume cube-root scaling is valid when comparing the
results of the numerical simulations with data from nuclear tests. Since these simulations
follow the shock wave produced by an initial source of finite size, cube-root scaling is at
best only approximately valid for these simulations.

In using cube-root scaling, we are tacitly assuming that the finite size of the source,
the asphernieity of the explosion, and any inhomogeneities in the ambient medium have
a negliigiine «ffect, both i the simmlations and in the actual test, by the time the shock
front has expanded to the radin at which the comparison 1s made. Although shock waves
produced by underground explosions in uniform media do tend to become more spherical
with tiine, the properties of the source can sometimes have a signifi-ant effect during the
hydrodynamic phase [Moran and Goldwire. 1989; Lamb et al., 1991b). Unfortunately, we
are unable to assess directly the validity of our assumptions, because we lack detailed
kunowledge of the sources used in the nmerical simulations, the conditions under which
the unelear tests were conducted. and the way in which the field data was collected.

We also lack detailed knowledge of how the otficial yields were determined for these
four events. In using the official yields to assess hydrodynamie methods, we are implicitly
assiming that they are accurate and independent of hydrodvnamic methods. However,
the procedure by which official yields are determined is known to be complex, and is not
publicly available. Tt is possible in some cases that the official yields may actually be less

accurate than the hydrodynamic vield estimate. Moreover, the official vield determination
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procedure usually makes use of information derived from hydrodynamic methods, as well
as radiochemical and other methods. If so, the official yield obviously is not independent
of the hydrodynamic yield. Furthermore, in some cases the material properties used to
obtain hydrodynamic yield estimates may have been adjusted to give better agreement
with estimates obtained using other methods. The comparisons in this section show that
despite the coinplexity of underground nuclear explosions, both the analytical model and
the numerical simulations accurately deseribe the shock waves produced by the nuclear
tests considered here, when the official yields are used.

A solution of the analytical model is determined by specifying the Hugoniot, the
value of the parameter f, and the yield. The Hugoniot can in principle be determined
from laboratory measurements made on samples taken from the emplacement and satellite
holes. Unfortunately, if such measurements were made for the four events analyzed here,
they are not publicly available. Therefore, we used generic Hugoniot data charactenstic of
the ambient medium of each explosion. For the reasons discussed in the preceding section,
we used f = 0.53 throughout the present analysis.

We first assess the accuracy of the analytical model in predicting the radius of the
shock front by comparing the radius vs. time curves it gives with radius vs. time data from
the four nuclear tests cited above. We then investigate the usefulness of the model for
vield estimation by fitting it to radius vs. time data from these tests, treating the yield as

an adjustable parameter.

Radius vs. Tyme Curves

In comparing the radius vs. time predictions with field data, we generally used
either the subset of the available data that fell within the hydrodynamic interval defined
below, or, where stated, certain larger data sets. However, for NTS-X, we followed the
recommendation of Heusinkveld [1979] and omitted the first nine data points from our
analysis. For Chiberta, the first seven points were inconsistent with each other and with
the remaining points, and hence these seven points were also omitted from our analysis.
We now discuss the analysis of each event in turn.

Piledriver. -The Piledriver event was an explosion conducted in granite at the Nevada
Test Site on 2 June 1966 and had an announced yield of 62 kt [U. S. Department of
Energy, 1987]. In modeling this explosion, we considered the simple linear and piecewise-
linear approximations to the quartz Hngoniot shown respectively by the dashed and solid
lines in Figures 2 and 3. We assumed that the granite surronnding the nuclear device had
a density equal to the standard density of quartz, namely 2650 kg/m3, and that the yield
of the explosion was 62 kt. We then integrated the differential equation (10) as deseribed

m & 2
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Figure 9 compares the predictions of the analytical model with the data from
Piledriver. The left panel shows the radius as a function of tune, whereas the right panel

displays the relative difference

= <1i,dala(t) - Rmudf‘l(t))
N Rdata(t) ’

(31)

between the predicted and measured radii, to allow a more detailed assessment of the
accuracy of the model. In both panels, the dashed curve is the result given by the simple
linear approximation to the Hugoniot, whereas the solid curve is the result given by the
piecewise-linear description of the full Hugoniot.

As expected, the radii given by the simple linear and the precewise-linear Hugoniots are
very similar at early times, but deviate significantly from one another at later times. When
the full Hugoniot is used, the relative difference 6 between the measured and predicted radi
is never more than 7% and is less than 4% after 0.6 ms. When the simple linear Hugoniot
is used for all particle speeds, the absolute value of é is less than 7% before 0.6 ms but rises
to ~11% after 1.2 ms. The radii predicted by the simple inear Hugoniot are systematically
too large after 0.6 ms because this approximation gives shock speeds that are systematically
too high when the particle speed is low (see Fig. 3). For reference, the peak pressure drops
to 15 GPa at about 2.8 ms. As discussed below, we adopted this pressure as marking the
end of the hydrodynamic phase.

Cannikin.—The Canntkin event was an explosion conducted m basalt at Amchitka
Island, Aluska, on 6 November 1971, The official yield of this event remains classified; the
U. S. Department of Energy [1987] has said only that it was less than 5 megatons. The
data from Canntkin that were given to us had been scaled by dividing both the radius and
the time measurements by the cube-root of the official vield in kilotons. If cube-root scaling
were exact, this would make the radius vs. time curve appear identical to the curve that
would result from detonation of a 1 kt device in the same medium. As noted above, cube-
root scaling may not always be accurate for underground nuclear explosions. However,
since the analytical model we are exploring exhibits exact cube-root scaling, comparisons
of this model with scaled and nunscaled data will give the same result. We therefore treated
the data from Cannikin as though it had been produced by a 1 kt explosion.

To construct a Hugoniot for Cannikin, we used the data on Vacaville basalt obtained
by Jones et al. [1968] and Ahrens and Gregson [1964]. These data and the piecewise-linear
and simple linear Hugoniots that we constructed from them are shown in Figure 10. We
asstmed the rock surrounding the explosion had a density of 2860 kg/m?, equal to the
density of the samples measured by Jones et al.

Figure 11 compares the radit predicted by the analytical model with the radii measured

during Canntkin. Again. the left panel shows the radius as a function of time, whereas the
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right panel displays the relative difference between the predicted and measured radii. When
the piecewise-linear approximation to the full Hugoniot is used, the relative difference
between the radii is always less than 3%. When the simple linear Hugoniot is used for
all particle speeds, the magnitude of é is less than 5% before 0.22 ras, but increases after
this time, reaching 14% at 0.6 ms, ncar the end of the data set. As in Piledriver, the radn
predicted by the simple linear Hugoniot are systematically too large after 0.1 ms because
this approximation gives shock speeds that are systematically too high when the particle
speed is low. For reference, the peak pressure falls to 15 GPa at about 0.7 scaled ms.
Thus, all the radius data from Canntkin lie within the hydrodynamic region.

Chiberta.- The Chiberta explosion was conducted in wet tuff at the Nevada Test Site
on 1975 December 20. The official yield of this test remains classified; the U. S. Department
of Energy [1987] has said only that it was between 20 and 200 kilotons. Using seismic data,
Dahlman and Israelson [1977] estimated that the yield of Chiberta was 160 kt. Like the
data from Cannikin, the radius vs. time data from Chiberte available to us were scaled
by the cube-root of the official yvield. For the reason explained above in connection with
Cannikin, we treated the data from Chiberta as though it had been produced by a 1 kt
explosion,

In modeling Chiberta, we used the linear and plecewise-linear approximations to the
wet tuff Hugoniot shown respectively by the dashed and solid lines in Figure 4. We assumed
that the rock surrounding the device emplacement had a density of 1950 kg/m3.

Figure 12 compares the predictions of the analytical model with the data from
Chiberta. Again, the dashed curve is the result given by the simple linear Hugoniot,
whereas the solid curve is the result given by the piccewise-linear approximation to the full
Hugoniot. As before, the radii given by the two approximations are very similar at early
times, but deviate significantly from one another at late times. When the piecewise-linear
Hugouiot is used, the relative difference § between the measured and predicted radii is
never more than ~4% and is $1% between .35 and 1.6 ms. When the simple linear
Hugoniot is used for all particle speeds, the absolute value of é is less than 3% before
0.6 s, but increases after this time, reaching 14% at 1.6 ms, near the end of the data
set. The radi predicted by the simple linear Hugoniot are systematically too small after
0.4 ms because this approximation gives shock speeds that are systematically too low for
low particle speeds (see Figo 4). For this event, the peak pressure falls below 15 GPa at
about 0.5 sealed ms. Thus, a large fraction of the radius measurements were made outside
the hydrodyuamie region.

NTS-X. The event we call NTS-X was an explosion conducted at the Nevada Test
Site. Radius vs. time Jdata from this explosion were reported by Heusinkveld [1979], who

stated that the official vield was 54.2 kt. Heusinkveld surmised that the ambient medium
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was saturated wet tuff, the ambient medinum of most tests conducted at the Nevada Test
Site.

In modeling NTS-X we assumed that the explosion did occur in wet tuff. We followed
the same procedure used in modeling Chiberta, except that we assumed the yield was
54.2 kt. Figure 13 compares the predictions of the analytical model with the data from
NTS-X. As before, the radii given by the simple linear Hugoniot and by the piecewise-linear
approximation to the full Hugoniot are very similar at early times, but deviate significantly
from one another at later times. The relative difference é is never more than than 5%
when the plecewise-linear Hugoniot 1s used. When the simple linear Hugoniot is used for
all particle speeds, é is less than 5% before 2 ms. but increases after this time, reaching
17% at 6 ms, near the end of the data set. As in Chiberta, the radii predicted by the simple
linear Hugoniot are systematically too small after (.1 ms because this approximation gives
shock speeds that are systematically too low for low particle speeds (see Fig. 4). For
reference, the peak pressure falis below 15 GPa at about 2.0 ms. Like Chiberta, a large

fraction of the radius measurements were made outside the hydrodynamic region.

Yield Estimation

Having shown that the analytical model of § 2 provides a relatively accurate description
of the evolution of the shock waves produced by underground nuclear explosions for several
of the geologic media found at U. S. test sites, we now consider its usefulness in yield
estimation. We do this by adjusting the assumed yield to give the best fit of the model to
radius vs. time data from the four U. S. nuclear tests discussed previously.

In order to determine the best fit of the analytical model to a given set of radius
vs. time data, we need a measure of the goodness of the fit. This should be a function
of the difference between the predicted and incasured shock front radii, weighted in an
appropriate way. Unfortunately, the radius data that we were furnished came without
any information on the random and systematic errors. In fact, no error information 1s
available for any of the currently declassified radius vs. time data, a large fraction of which
15 analyzed here.

The absence of error information made it impossible to develop a proper measure of the
goodness of the fits and to determine the nncertaintios of the yield estimates. We therefore
adopted a very simple fitting procedure that allowed us to determine a best-fit yield and
to compare hts to field data made with the analytical model and with the numerical
simulations of the Los Alamos CORRTEX group. We assess the accuracy of the yield
estimmates made with the analytical model by comparing them with the estimates obtained
by fitting numerical simmlations to the same data, an approach called simulated ezplosion

scaling. and by comparing them with the official yields. The precise algorithm used in
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determining official yields is unknown, but presumably makes use of radiochemical and
seismic as well as shock wave measurements, when these are available (see Lamb [1988]).

Procedure.  For simplicity, we assumed that all yields are equally likely a priori and
that the measurement errors follow a Gaussian distribution. Then the maximuin of the
likelihood function can be found by minmizing the properly weighted sum of the mean-
square differences between the predieted and measured shock front radii (see, for example,
Mathews and Walker [1964], § 14 7). Since we had no information on the errors of the
individual measurements, we assuned that the measurements are unbiased and assigned
them unit weight if they met our selection eritena (see below) or zero weight if they did

not. The maximum of the iikelihood funetion is then given by the minimum of the measure
1 <~y 2 |
T}_,(lf’t') o andc-l{,x)) . (32)
. 1

where the sum runs over the measurements vsed in the particular yield estimate.

The analytical model and the numerieal simulations discussed in § 2 and § 3 are valid
ouly during the hydrodynamic phases when the strength of the ambient medium can be
neglected. However, the inflnence of the strength of the medium increases gradually as the
shock wave weakens, so there is no well defined peak pressure at which the hydrodynamic
phase ends. Wackerle [1962] found that in quartz, strength effects can be ignored above
the eritical stress, which is about 4 GPa. Studies by Grady et al. [1974] of quartz at
pressures above 15 GPa demonstrated that s‘rength effects are negligible in this pressure
regime. Basalt becomes plastic at a critical stress of about 4 GPa [Ahrens and Gregson,
1964). The eritical stress for saturated wet tuff is estimated to be ~1 GPa [Holzer, 1965].
In the present work we have adopted the convention that the hydrodynainic phase ends
in all these materials when the peak pressure falls below 15 GPa. This is a conservative
criterion, in the sense the hydrodynamic phase most likely extends to lower peak pressures.

When fitting the analytical model or the simulated explosion in wet tuff of King et
al. [1089] to field data, we determined the point at which the peak pressure fell below
15 GPa uwsing the analvtical model with the piecewise-linear representations of the full
Hugoniots of § 3. When fitting the simuiated explosion in Si0; of King et al. [1989] to
ficld data, we determined the point at which the peak pressure fell below 15 GPa using
the analytical model with the approximate Hugoniot adopted by King et al. Plots of the
peak pressure predicted by the analvtical model are given in the appendix.

We are interested in the accuracy of the analytical model when it is used with
simple linear Hugoniots, since we nse this approximation i a companion study of how
the evolution of the shock wave is influenced by the properties of the ambient medium
and how these properties atfeet the characteristic radius at which the shock wave becomes

a low pressure plastic wave (Lamh et all [1991a]: for a preliminary account, see Lamb et
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al. [1989], Callen et al. [1990a)). We therefore compare *he yields obtained by fitting the
analytical model to the field data using simple linear approximations to the Hugoniots
with the yields obtained using the full, piecewise-linear Hugoniots.

Although the analytical model and the numerical simulations we consider are valid
only during the hydrodynamic phase, in some cases they may describe the evolution of the
shock wave adequately even beyond the region where the peax stress is large compared with
the critical stress of the medium. Knowing how rapidly these models become inaccurate
when used outside the hydrodynamic region is important for assessing whether they can be
used for yield estimation when the shock wave within the hydrodynamic region is disturbed,
either because the yield is low, causing the hydrodynamic region to be close to the device
canister, or because the geometry of the test is complex (see Lamul {1983]). In order to
investigate the accuracy of the analytical model when fit to data taken at relatively large
radii, we first estimated yields using only data taken during the hydrodyu.mic phase as
defined above and then using two successively larger sets of data, defined by successively
lower cutoff pressures. The radius at which the peak pressure predicted by the analytical
model falls below a given pressure depends on the assumed yield. Thus, the number of
data points used in evaluating expression (32) varies with the assumed yield.

Results.— The results obtained by fitting the analytical model and numerical
simulations to field data from the hydrodynamic interval are summarized in Tables 1-4.
The first column in cach table shows which model was used: the analytical model or one
of the numerical simnulations discussed in § 3. The second column shows which Hugoniot
was used: the simple linear approximation to the generic Hugoniot, the piecewise-linear
representation of the full generic Hugoniot, the approximate Si0O, Hugoniot of King et
al. [1989], or the wet tuff Hugoniot of King et al. [1989]. The next four columns list
results obtained by fitting the models with the specitied Hugoniots to field data from the
hydrodynamic phase. Shown are the vield estinate 1, the number N of data points

used in the estimate, the root-mean-square difference in radius

r

’ : Z(R(fi)"Rmn(!vl(t‘)\\z . (33)
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and the gnantity AR,,M/'H'PL/‘} for cach fit. The last ¢uantity can be used to compare
the quality of the fits achieved for the four events For Piedriver and NTS-X, the yield
estitiates are given to the nearest 0.1 kt, whereas for Cannikin aud Chiberta, the estimates
are given to the nearest 0,005 kt. Table 5 compares the results obtained by fitting the
analytical model to data from the hydrodynamic interval with the results obtained by

fitting to data sets that include data from beyond the hydrodynamic interval.




Not surpnisingly, the hest agreement between the official yield and the yield estimated
by fitting the analytical model to the radius vs. time data is achieved when a piecewise-
linear representation of the full Hugoniot is used and the model is fit only to deta from the
hydrodynamic phase. In this case, the difference between the official yield and the yield
obtained by fitting the analytical model is 1% for Piledriver, 8% for Cannikin, and 7% for
Chiberta. The difference hetween the yield quoted by Heusinkveld [1979) for NTS-X and
the yield obtained by fitting the analyvtical model is 8%. For comparison, the differences
between the official or quoted yields of these events and the yields obtained by fitting
the namerical simulations to data from the hydrodynamic phase are 2%, 1%, 7%, and
1%, respectively. Thus, the yield estimates obtained by fitting the analytical model with
piecewise-linear representations of the Hugoniots to data from the hydrodynamic phase
are nearly as accurate as the vield estiuates obtained by fitting the numerical simulations
to these same data.

The agreement between the official yield and the yield estimated by fitting the
analytical model with sunple hnear Hugoniots to data from the hydrodynamic phase is
not as close, but is still remarkably good. For the events in wet tuff, the estimated yields
ditfer from the official or quoted yields by onlv ©7 o0 V78X and 5% for Chiberta. This is
not surprising, since the simple ineas  proximation to the Hugoniot is nearly identical to
the full, piecewise linear represeucation of the Hugoniot for the particle speeds encountered

during the hydrodynanie phase o thi, o0 Yo feee Figure 4). For the same reason, the
sield of the Cannikin event obtained by using the analytical model with the simple linear
approximation to the basalt Hugoniot differs from the ofticial yield by only 2%. Although
the relative difference AW/ obtained using this approximation to the Hugoniot is smaller
than the relative difference obtained using the piecewise-linear representation of the full
Hugoniot, the quality of the fit ix somewhat poorer, as shown by the size of ARms (sce
Table 2). However, for the Piledriver event, the difference between the official yield and the
vield obtained using the simmple linear Hugoniot is ~40%, much greater than the difference
when the piecewise-linear Hugoniot is nsed. This is not surprising, since the simple linear
approximation to the Si10, Hugoniot s inacenrate for the particle speeds encountered
during most of the hvdvodynamic phase (see Figures 2 and 3).

Constder now the effect on the vield estimates when data from outside the
hydrodyniune phase are ineluded. A meaningful study of this effect is only pessible {or
Chaberta and NTS-X . since all or alhinost all the available data from Cuennikin and Piledriver
e within the hydrodynamie region. As shown i Table 5, the estimated yield of NTS-X
imereases from R0 to 66,4 and 71.5 kt when data out to peak pressures of 7.5 and 4.6 GPa
are inchided. The differences between the Tatter yields and the quoted yield of 54.2 kt are
2390 and 329 respectively, For Chiberta, on the other havd, including data out to peak

prossures of 7.5 and 1.6 GPa inereases the estimated vield only slightly, from 0.930 to 0.970
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and 0.995 kt. The differences between the latter yields and the official yield of 1.00 kt are
3% and 0.5%, respectively.

The large difference in the sensitivity of the Chiberta and NTS-X yield estimates to
inclusion of data from outside the hydrodynamic interval is somewhat surprising, since
both events supposedly took place in wet tuff and the data from both events extend to
approximately the same scaled time (~0.6 ms/kt!/?). However, as explained above, we
do not know eithicer the medium or the yield of NTS-X for certain. Furthermore, we have
no knowledge of any special conditions that may have affected the explosion or the shock
wave radius measurements. There does appear to be a systematic difference between the
fits of the analytical model to these two events at late times. Without more information,
we are unable to determine whether this difference is due to some difference in the events
themselves, to systematic error in one of the sets of radius measurements, to systematic
error ir the Hugoniot we have used, or to inaccuracy of the analytical model when it is
used so far outside the hydrodynamic region.




5. SUMMARY AND CONCLUSIONS

We have explored an approximate analytical model of the evolution, during the
hydrodynamic phase, of the shock wave produced by a spherically-symmetric explosion in a
homogeneous medium. The equation of motion for the shock front treats the compression
of material at the front exactly, using the Rankine-Hugoniot jump conditions and the
Hugouiot of the ambient medium. The rarefaction behind the shock front is treated
only approximately through a parameter f that describes the distribution of the fluid
variables within the shocked volume. A key assumption of the model is that f remains
constant throughout the evolution of the shock wave. The model predicts the evolution
of the particle speed, shock speed, mass density, pressure, and specific internal energy
immediately behind the shock front, as well as the shock front radius as a function of
time. For a point explosion, the model exhibits cube-root scaling, in accordance with the
conservation laws for spherically symmetric point explosions in uniform media (see King
et al. [1989] and Lamb et al. {1991b]).

We have shown that the parameter f, which relates the specific kinetic energy of the
fluid just behind the shock front to the mean specific energy within the shocked volume,
is constant when the shock wave is strong and self-similar. By comparing the relation
involving f with results from numerical simulations of underground nuclear explosions
in quartz and wet tuff, we have shown that it i1s also remarkably constant even when
the shock wave is no longer strong, for explosions in these media. Furthermore, we find
that the value of f is relatively independent of the ambient medium, and that f = 0.53
adequately reproduces the particle-speed curve extracted from the numerical simulations,
in agreement with the previous results of Moss [1988].

The radius vs. time curves predicted by the model for a point explosion are in excellent
agreement with the shock front radii measured during underground nuclear tests in granite,
wet tuff, and basalt, when the official yields are assumed and f is set equal to 0.53. If the
model 1s used with a pieccewise-linear approximation to the Hugoniot, the largest differences
between the predicted and measured radii range from 3% to 7% for the different events.
Even when the model is used with a siiple linear approximation to the Hugoniot, the
shock front radii that it predicts agree extremely well with the measured radii for the
events in wet tuff (Chiberta and NTS-X), where the differences are less than 3% and 6%,
respectively, during the hydrodynamic phase. For the events in basalt (Cannikin) and
granite ( Piledriver), the high-pressure approximation works less well, but the differences
in the predicted and measured radii are still less than 14% during the hydrodynamic phase.
The average differences are substantially less in all cases.

We have shown that the model can also be used to estimate the yields of underground
nuclear explosions, with good results. When the analytical model is used with point-

source boundary conditions and a piecewise-linear representation of the Hugoniot, the
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yields obtained by fitting the radius vs. time data from the hydrodynamic phase of the
explosions are within 8% of the official yields. For comparison, the yields obtained by
fitting numerical simulations carried out by the Los Alamos CORRTEX group to the
same data are within 7% of the official yields. Thus, the yield estimates obtained using the
analytical model are nearly as accurate as the yield estimates obtained using the numerical
simulations.

More generally, the U. S. Department of State has claimed that hydrodynamic
methods are accurate to within 15% (at the 95% confidence level) of radiochemical yield
estimates for tests with yields greater than 50 kt in the geologic media in which tests
have been conducted at the Nevada Test Site (U. S. Department of State {1986a,b]; see
also U. S. Congress, Office of Technology Assessment [1988]; Lamb [1988]). Thus, the
analytical model appears to be competitive with existing models for estimating the yields
of underground nuclear tests conducted in relatively uniform media.

In a companion paper [Lamb et al., 1991a}, we use the analytical model studied here
to investigate hydrodynamic yield estimation algorithms more fully, including optimal
weighting of radius vs. time data (a preliminary account of this work has been given in
Lamb et al. [1989] and Callen et al. [1990a]). In a subsequent paper [Lamb et al., 1991b],
we analyze the validity of cube-root scaling for spherically-symmetric underground nuclear
explosions, using similarity transformation methods and numerical simulations to explore

the effects of source size and composition.




APPENDIX: COMPARISON WITH HEUSINKVELD’S MODEL

In this appendix, we compare the approximate analytical model of § 2 with the
approximate model proposed by Heusinkveld [1979, 1982]. Both models neglect the specific
internal energy and pressure of the ambient medium. Both also predict radius vs. time
curves that exhibit the temporal behavior characteristic of a strong, self-similar shock wave
at carly times, then enter a gradual transition period, and finally exhibit the temporal
behavior of a low-pressure plastic wave. However, Heusinkveld’s model differs from the
model of § 2 in several important respeets.

First, Heusinkveld assumed that the internal energy per unit volume just behind the
shock front, namely e; = p €y, is a constant fraction fy; of the total energy per unit volume

within the shock front, that is,

3fuW
‘T arRs

In contrast, the model of § 2 assumes that the specific kinetic energy of the fluid just

(A1)

behind the shock front is a constant fraction f of the total specific energy within the shock
front (see eq. [3]); the specific internal encrgy just behind the shock front is equal to the
specific kinetic energy there (see eq. [3]).

Second, Heusinkveld's model satisfies only the momentum jump condition (2), whereas
the model of § 2 satisfies all three jump couditions (1), (2), and (). In place of the specific
internal energy jump condition {3}, Heusinkveld assumed that the pressure just behind the
shock front is proportional to a constant coefficient T' times the energy per unit volume

there, that 1s,

m = Ff] . (‘Az)

As noted in § 3, this is the strong shock limit of the Mie-Griineisen equation of state when
the Griineisen I does not depend on the density. It may be an adequate description of the
equation of state of the shocked medium, provided that the Grineisen I' is independent of
density and the shock wave is strong. However, the shock waves produced by underground
muclear explosions are relatively weak during much of their hydrodynamic phase (see
Lamb [1988]).

Heusinkveld also assumed a simple hinear relation between D and u, of the form (6).
However, the jump couditions (1), (2), and (3). the equation of state (A2), and the D
vs. oy relation (6) are mntually inconsistent. For example, if one accepts the mass flux
jump condition (1), the momentum jump condition (2), and the ansatz (A1), one finds that
the energy jump condition (3) 1s inconsistent with a linear D vs. u; relation. Alternatively,
if one accepts the D vs. uy relation (6), one is led to the Hugouiot (see Zel'dovich and
Raizer [1967]. p. 710)
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which is inconsistent with the jump conditions (1), (2), and (3) and the equation of
state (A2).

Heusinkveld’s model gives expressions for the shock speed, the radius vs. time curve,
and the post-shock pressure, post-shock particle speed, and post-shock internal energy that
are qualitatively different from the expressions given by the model of § 2. For example, by
equating the pressure given by expression (A2) with the post-shock pressure given by the
momentum jump condition (2) and making use of the ensatz (A1), Heusinkveld obtained

a quadratic equation involving the shock speed. The solution of this equation is

A 1\
Dy=7% 1+(1+i;{7> , (A4)

where

i

(AS)
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is a characteristic length, analogous to the characteristic length L defined in equation (8).
Expression (A4) is qualitatively different from equation (9), the relationship predicted by
the model of § 2. The radius vs. time curve predicted by Heusinkveld's mnodel can be
obtained by numerically integrating equation (A4).?

Even though the model of § 2 is self-consistent whereas Heusinkveld's model is
not, both are approximate. Thus, their usefulness is best evaluated by comparing their
predictions with data from nuclear tests and/or numerical simulations. We show here
comparisons of the predictions of the two models with da.a from numerical simulations
for three reasons. First, the initial conditions of these simulations approach that of point
explosions, a simple case that the two models cach deseribe. Second, we lack detailed
knowledge of the conditions under which the nuclear test data were obtained (see § 4).
Third, the simulations have reportedly been validated by extensive comparison with data
from underground nuclear tests.

In comparing the two models with the results of simulations, we wish to make a
consistent choice of model parameters. We do this by forcing agreement between the two
models at the beginning of the expiosion, as follows. At carly times, the radius vs. time
2/5

curve given by Heusinkveld's model displays the £/ dependence characteristic of a strong.

self-similar shock wave, that 1s,

75T B 1/5 N
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¢ Although Heusinkveld assumed a simple linear D vs uy relation. an arbitrary D vs u,
relation can be treated to any desired accuracy by using a piccewise-linear approximation.

as deseribed in § 2.




On comparing this curve with the early time curve given by the model of § 2, namely,

e fp2ren 175
R(t) = (iﬂ $2/5 (A7)
lGTn’[}U

we sce that if I'fy 1s set equal to fI3, the two models will give identical results at the
beginning of the explosion. In the comparisons that follow, we do this.

Figures Al and A2 compare the radins vs. time curves predicted by the two models for
explosions in quartz and wet tuff with the data from siimulated explosions in the same media
that were described in § 2. For the explosion in quartz, we used T'fyg = 0.325. whereas
for wet tuff we used T'fy; = 0.299. For comparison, Heusinkveld obtained I'fy; = 0.78
for explosions in alluvium and wet tuff and 1.03 for explosions in granite by fitting his
model to the particle speed data of Perret and Bass [1975] at relatively late times; had
we used these values in the comparisons, the discrepancies between Heusinkveld’s model
and the simulations would have been much greater. Although the radius vs. time curves
are integrals of the shock speeds predicted by the models and hence tend to smooth out
differences, the curve predicted by the analytical model of § 2 agrees better with the
simulations than does the curve predicted by Heusinkveld’s model.

Additional and more decisive comparisons can be made between the post-shock
pressures and partiele speeds given by the models.  On substituting equation (A4) into
the 1) vs. uy relation (6, oue finds that Heusinkveld’s model predicts the post-shock

particle speed

A (. 3rfyBwW\'7?
H _
T 5p (1 717) -1 (A8)
At small radii, equation (A8) becomes
i, [ 3UfuW 12 R< (A9)
‘= 4 py BR3 ‘ g

Thus. #!! has the same R-dependence at small radii as that given by the ansatz (5) of § 2.
once [ fy has been set equal to fB. However, at Jarge radii the post-shock particle speed

predicted by Heustukveld's model seales with radins according to

"o 3I.f/l”'

o TpoARY R>q. (A10)

Fignres A3 and A4 compare the post <hiock particle speeds predicted by the two models
with those derived from the sinmlated explosions in quartz and wet tuff. The R™3/2.
dependence predicted by the niodel of § 2 agrees mnich better with the particle speed

dara at Tate fimes than does the 1Y depondence predicted by Heusinkveld's model. In
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particular, there is no evidence of the break in the slope of the u; vs. R curve at R~ ¢
that is predicted by Heusinkveld’s model.
The post-shock pressure predicted by Heusinkveld’s model is given by equations (A1)

and (A2), and is
_3fuW

Pr= e (A11)

In contrast, the model of § 2 predicts that the post-shock pressure falls off as R=3 for
R « L, but is proportional to R=3/2 for R > L (See eq. [23]). Figures A5 and A6 show
that the pressure curves derived from the simulations show such a break at about the right
radius, demonstrating that the model of § 2 is in better agreement with the simulations
than is Heusinkveld's model.

Perret and Bass [1975] show that pressure data from explosions in several geologic
media is well fit by R=2% out to distances of 8m/W'/3 at which point a clear break
occurs. At distances beyond this break. the data are better described by R=1-75. This large
R behavior is more in keeping with the analytical model of § 2 than the R=3 dependence
at all distances predicted by Heusinkveld's model.

The predictions of the two models differ significantly well before the assumptions of
the model discussed in § 2 become invalid. As discussed in § 4, the hydrodynamic phase
extends at least out to the radius at which the post-shock pressure has fallen to 15 GPa.
Obviously. the ambient pressure of 20 MPa can be neglected throughout the hydrodynamic
phase. As noted in § 2, the ambient specific internal energy can be neglected for particle
speeds greater than 0.1 km/s; Figures A3 and A4 show that the post-shock particle speed
is actually 1 kin/s or greater throughout the hydrodynamic phase. Figures A1-A6 show
that the differences between the two models are alveady significant at 10 meters, and
increase dramatically at larger radii, wherecas the post-shock pressure falls to 15 GPa at
25 meters in quartz and 22 meters in wet tuff. At 25 meters in quartz, the peak particle
speed predicted by the model we discuss falls right on the curve predicted by the numerical
simulation, and is 2.5 times larger than the peak particle speed predicted by Heusinkveld's
model, which is far below the curve predicted by the simulation.

These compansons show that the model of § 2. which fully incorporates the Rankine-
Hugoniot jump conditions and does not assume any particular equation of state, also agrees
better with the radius vs. time curves and the post-shock partiele speed and pressure data

derived from the simulated explosions than does the model suggested by Heusinkveld.
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Figure Captions

Fig. 1.—Dimensionless energy partition factor f as a function of Gruneisen coefficient

T for a strong point explosion in a medium obeying a Mie-Grilneisen equation of state.

Fig. 2.—Hugoniot data for SiO; and two of the representations used in calculations
described in the text. The solid line shows the piecewise-linear approximation to the full
Hugoniot while the dashed line shows a simple linear approximation to the high-pressure

portion of the Hugoniot.

Fig. 3.-—Expanded view of Si0, Hugoniot data at low pressures and three
representations used in calculations descnibed in the text. The solid line shows the
piecewise-linear approximation to the full Hugoniot while the dashed line shows a simple
linear approximation to the high-pressure portion of the Hugoniot. The latter is clearly
inaccurate at low particle speeds. The dash-dotted segment at low wu, is similar to the
approximate Hugoniot used by King et al. [1989] ar.d replaces the corresponding section of
the piecewise-linear Hugoniot when comparisons are made with the numerical simulations
of D. Eilers et al. Also shown 1s the isobar at 15 GPa, the pressure we have adopted as

marking the end of the hydrodynamic phase.

Fig. 4. Hugoniot data for wet tuff [King et ai., 1989] and two representations used in
calculations described in the text. The solid line shows our piecewise-linear approximation
to the full Hugoniot, while the dashed line shows the simple linear approximation to the
high-pressure portion of the Hugoniot. Also shown is the isobar at 15 GPa, the pressure

we have adopted as marking the end of the hydrodynamic phase.

Fig. 5. -Peak particle speed u; vs. shock frout radius R for a 100 kt explosion in Si0,.
from a numerical simulation by D. Eilers et al. (private communication, 1987), compared
with the peak particle speed predicted by the analytical model (solid line). The analytical
model deseribes the data quite well over two decades of particle speed, showing that the

energy partition ansatz (eq. [5]) is relatively accurate.

Fig. 6.--Peak particle speed u; vs. shock front radins R for a 100 kt explosion in
wet tuff, from a numerical simulation by D. Eilers et al. (private communication, 1987).
commpared with the peak particle speed predicted by the analytical model (solid line).
Again. the analytical model deseribes the data quite well over two decades of particle

speed, showing that the energy partition ansatz (eq. [3]) is relatively accurate.

Fig. 7. Comparison of shock frout radius vs. time curves predicted by the analytical

model with radius ve. time data from the numerical siinulation of a 100 kt explosion in
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Si0, by D. Eilers et al. (private comumunication, 1987). Left panel: Predicted radii as
functions of time. Right pancl: Relative difference between radii predicted from the SiO,
sinulation and from the analytical model. The dash-dotted lines show the results when
the piecewise-linear representation of the full Hugoniot (see Figs. 2 and 3) is used in the
analytical model; the dashed lines show the results when the simple linear approximation

to the high-pressure portion of the Hugoniot (again see Figs. 2 and 3) is used.

Fig. 8.- -Comparizon of shock front radins vs. time curves predicted by the analytical
model with radius vs. time data frona the numerical simulation of a 100 kt explosion in
wet tuff by D. Eilers et al. (private connnunication, 1987). Left panel: Predicted radii
as functions of time. Right panel: Relative difference between radii predicted from the
S10; simulation and from the analytical model. The dash-dotted lines show the results
when the piecewise-linear representation of the full Hugoniot (see Fig. 4) is used in the
analytical model; the dashed lines show the results when the simple linear approximation

to the high-pressure portion of the Hugoniot (again see Fig. 4) is used.

Fig. 9. -Comparison of shock front radius vs. time curves predicted by the analytical
model with radius vs. time data from Piledriver, a 62 kt explosion in granite. The arrow
in cach panel marks the radius at which the peak pressure drops to 15 GPa, which we have
adopted as the end of the hydrodynamic phase. Left panel: Predicted and measured radii
as functions of time. Right panel: Relative difference between measured and predicted
radil. The solid lines show the results when the piecewise-linear representation of the full
Hugoniot (see Figs. 2 and 3) is used in the analytical model; the dashed lines show the
results when the simple linear approximation to the high-pressure portion of the Hugoniot
(again see Figs. 2 and 3) 1s used. When the piecewise-linear Hugoniot is used, the radii
predicted by the analytical model differ from the measured radii by no more than 7% over
the whole range of the data. The piecewise-linear representation of the Hugoniot is clearly

superior to the simple linear after about 0.5 ms.

Fig. 10. Hugoniot data for basalt from Jones et al. [1968] and Ahrens and
Gregson [1964] aud two re: cesentations used in calculations described in the text. The
solid line shows the piecewise linear representation of the full Hugoniot while the dashed

line shows the simple linear approximation to the high-pressure portion of the Hugoniot.

Fig. 11, Compianso Hock front radins vs. time curves predicted by the analytical
model with radius vs tine data from Canntkin, an explosion in basalt with a yield of
several Mt The measurements have bheen scaled to show an apparent yield of 1 kt (see
text ). Left panel: Predicted and measured radin as funetions of time. Right panel: Relative

difference between measured and predicted radin. The solid Lines show the results when the
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piecewise-linear representation of the full Hugoniot (see Fig. 10) is used in the analytical
model; the dashed lines show the results when the simple linear approximation to the
high-pressure portion of the Hugoniot (again see Fig. 10) is used. The analytical model
with the piecewise-linear Hugoniot predicts shock front radii that are within 3% of the

measured radii over the full range of the data.

Fig. 12.—Comparison of shock front radius vs. time curves predicted by the analytical
model with radius vs. time data from Chiberta, an explosion in wet tuff with a yield in
the range 20-200 kt. The measurements have been scaled to show an apparent yield of
1 kt (see text). The arrow in each panel marks the radius at which the peak pressure
drops to 15 GPa, which we have adopted as the end of the hydrodynamic phase. Left
panel: Predicted and measured radii as functions of time. Right panel: Relative difference
between measured and predicted radii. The solid lines show the results when the piecewise-
linear representation of the full Hugoniot (see Fig. 4) is used in the analytical model; the
dashed lines show the results when the simple linear approximation to the high-pressure
portion of the Hugoniot (again see Fig. 4) is used. The analytical model with the piecewise-
linear Hugoniot predicts shock front radii that are within 3% of the measured radii over

the full range of the data.

Fig. 13.—Comparison of shock front radius vs. time curves predicted by the analytical
model with radius vs. time data from NTS§-X| assumed to be an explosion in wet tuff with
a yicld of 54.2 kt. The measurements have been scaled to show an apparent yield of
1 kt (see text). The arrow in each panel marks the radius at which the peak pressure
drops to 15 GPa, which we have adopted as the end of the hydrodynamic phase. Left
panel: Predicted and measured radii as functions of time. Right panel: Relative difference
between measured and predicted radii. The solid lines show the results when the piecewise-
linear representation of the full Hugoniot (see Fig. 4) is used in the analytical model; the
dashed lines show the results when the simple linear approximation to the high-pressure
portion of the Hugoniot (again see Fig. 4) 1s used. The analytical model with the piecewise-
lincar Hugoniot predicts shock front radii that are within 5% of the measured radii over

the full range of the data.

Fig. A1, Comparison of the shock front radil predicted by the analytical model
of § 2 (solid line) and the model of Heusinkveld [1932] (dashed line) with radius data
from a numerical simulation of a 100 kt explosion in SiQ, by D. Eilers et al. (private
communication, 1987). The piccewise-linear representation of the Si0Q, Hugoniot shown

in Figs. 2 and 3 was used in both models.




Fig. A2.—Comparison of the shock front radii predicted by the analytical model
of § 2 (solid line) and the model of Heusinkveld [1982] (dashed line) with radius data
from a numerical simulation of a 100 kt explosion in wet tuff by D. Eilers et al. (private
communication, 1987). The piecewise-linear representation of the wet tuff Hugoniot shown

i Fig. 4 was used in both models.

Fig. A3.--Comparison of the peak particle speed predicted by the analytical model
of § 2 (solid line) and the model of Heusinkveld [1982] (dashed line) with peak particle
speeds from a numerical simulation of a 100 kt explosion in §Si0, by D. Eilers et al. (private
communication, 1987). The piecewise-lincar representation of the 510, Hugoniot shown
in Figs. 2 and 3 was used in the model of Heusinkveld. The peak particle speed predicted

by the analytical model of § 2 is independent of the Hugoniot and scales as R~3/2.

Fig. A4.- Comparison of the peak particle speed predicted by the analytical model of
§ 2 (solid line) and the model of Heusinkveld [1982] (dashed line) with peak particle speeds
from a numerical simulation of a 100 kt explosion in wet tuff by D. Eilers et al. (private
communication, 1987). The piecewise-linear representation of the wet tuff Hugoniot shown
in Fig. 4 was used in the model of Heusinkveld. The peak particle speed predi-ted by the

analytical model of § 215 independent of the Hugoniot.

Fig. A5, Cowmparison of the peak pressure predicted by the analytical model of
§ 2 (solid line) and the model of Heusinkveld [1982] (dashed line) with peak pressures
from a numerical simulation of a 100 kt explosion in Si0, by D. Eilers et al. (private

3/2 variation

communication, 1987). The numerical results are more consistent with the R~
at large R predicted by the model of § 2 than with the R~ variation predicted by the

model of Heusinkveld.

Fig. A6.— Comparison of the peak pressure predicted by the analytical model of
§ 2 (solid line) and the model of Heusinkveld [1982] (dashed line) with peak pressures
from a numerical simulation of a 100 kt explosion in wet tuff by D. Eilers et al. (private
communication, 1987). Again, the numerical results are more consistent with the R~3/2
variation at large R predicted by the model of § 2 than with the R~3 variation predicted

by the model of Heusinkveld.

39




ov s W

Tables

Yield Estimates for Piledriver

Yield Estimates for Cannikin

Yield Estimates for NTS-X

Yield Estimates for Chiberta

Effect on Yield Estimates of Including Data from Outside the Hydrodynamic Phase

40




TABLE 1

Yield Estimates for Piledriver®

Model Hugoniot Wea (kt) N ARpme (m) ARy, /W
Analytical model Linear Si0), 37.6 22 0.785 0.234
Analytical model Full Si0), 62.5 25 0.312 0.079
Numerical simulation  King et al. Si0), 63.4 24 0.349 0.088

% Yield estimates obtained by fitting the model or simulation to measurements made during
the hydrodynamic phase of the explosion. Wy is the estimated yield, N is the number
of data points used in the yield estimate, and ARpps is the root-mean square difference
between the measured and predicted shock front radii. The quantity AR,mS/I""els/ts
be used to compare the quality of the fits for different explosions. The official yield of

Piedriver was 62 kt [U. S. Department of Energy, 1987].

can

TABLE 2

Yield estimates for Cannikin?

Model Hugoniot Wew (kt) N ARims (n)  ARpme /W3
Analytical model Linear basalt 0.980 154 0.030 0.031
Analytical model Full basalt 0.925 158 0.020 0.021
Numerical simulation  Kiug et al. Si0), 0.990 158 0.037 0.037

* Yield estimates obtained by fitting the model or simulation to measurements made during

. . - v 1/3
the hydrodynamic phase of the explosion. Wegio N, AR me. and AR,m,/"Ves{ have the same
meanings as in Table 1. The data for Cannikin have been scaled so that the apparent vield

s 1 kt (see text).
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TABLE 3

Yield Estimates for NTS-X*

Model Hugoniot West (kt) N ARy (m) ARpme/WL?
Analytical model Linear wet tuff 59.2 30 0.101 0.026
Analytical model Full wet tuff 58.5 34 0.087 0.022
Numerical simulation Full wet tuft 57.9 34 0.084 0.022

2 Yield estimates obtained by fitting the model or silmulation to measurements made during
. . 1/3
the hydrodynamic phase of the explosion. Wy, N, AR e, and ARI’mS/‘/‘/Yes/t have the

same meanings as in Table 1. The yield of NTS-X is given as 54.2 kt by Heusinkveld
(1979].

TABLE 4

Yield Estimates for Chiberta®

Model Hugoniot Wew (k1) N ARime (M)  ARpme/WL?
Analytical model Lincar wet tuff 0.950 42 0.028 0.028
Aunalytical model Full wet tuft 0.930 47 0.021 0.021
Numerical simulation  Full wet tuff 0.910 45 0.013 0.014

* Yield estimates obtained by fitting the model or simulation to measurements made during
the hydrodynamic phase of the explosion. W, N. AR . and AR”,,,,/U},L/l
same meanings as in Table 1. The data for Chiberta were scaled so that the apparent yield
is 1 kt (see text).

3
have the




"(1%93 998) 1Y [ S1 patA uatedde 3yy jey) 0S poleIS UIIQ IARY DILIQLY,) UIOL) BIRD Iy |
16261] proaymisnolf Aq 1 2°t¢ se usald st y-GJ A 3O PISIA 34, ‘[ Qe Ul se sBuluvam auies ayy aawy
m,\vﬁ.ﬂ\:\uzzkﬂ pue }::M&A.., A .:&.ﬁ aseyd JIWRUAPOIPAN ) PUOASQ WOLJ Blep apPNIUL alijRA ST} Mojay
saunssadd oo gitw $1y oyl sy | g0 ¢1 Mopaq siie} oinssald yrad ay1 usym spua aveyd dtweusporpiy
O “HIOM STYL UL PIST UONIIIAUOD aY) 03 FUIPICIIY "dU[RA HOIND PARIIPUL Y] MO[3q S|[B) [opOll [PIIA|eUR
oyl Aq peoiipold einssaid yeod 9yl Yaiym e sniped o) 0} N0 RIRP 0} S}Y JOJ AJB UMOUS S)NSSl Ay

00 ¥¥0°0 P01 S66°0 L1070 0ce0 | 522 SR ®dD 9%
100 LE00 18 0,670 195070 1160 €8 F9n vdo ol
1c0°0 16070 ¥ 0€6°0 «c00 L1800 28 ege vdD <1

Inag L)

e /TR (w) YT A () IS TVAR AR ) B ? A LA K PIRRt o)

D349y X-SIN

e ?SBY ] .VM:SWZ.».TAZT.».: .wﬂu .::,/.H:Av Z:C.w S:WQ .ﬁ,::::.:: mC ﬁwﬁdﬂifﬂ@ ML;TW 1o ub.u.:m

CHTaYL

43




f(I')

1.6

1.4+

1.2

1.0+

0.8

0.6

0.4}

| 1

1

-

2 3

Griineisen I
Fig. 1

44

4

i




Shock speed D (km/s)

1 | | 1 i

5 10 15 20 25
Post-shock particle speed u; (km/s)

Fig. 2

45

30




Shock speed D (km/s)

] 1 | l

I 2 3 4
Post-shock particle speed u; (km/s)

Fig. 3

46




Shock speed D (km/s)

0 | ! 1 1 l L
0 l 2 3 4 5 6 7

Post-shock particle speed i, (km/s)

Fig. 4

47




i
6 7 89

1
5

(o]

(s/rry) {n poaads oonaed yooys-1s0d

10

Shock front radius R (m)

Fig. 5

48




T T | T T T Y T <
b e
(-
=3
=~ —_
- qei m
% |
79
=
. y—
1= %
4= | &) \O
S ES - e
amipe
4~ O W
S
L Ee -
-4 IK
]
O
I
gre
1 1 TS S 1 1 1 1 | T T T 1 s
A g o o3 DNOoC I~ O v <t o o3 >N 00~ O v, hot
——

(s/ury) ‘n paads oponred yooys-1s0g




(su) owr]

L .
-
L
~
~
bl Y
"
— . -
~
~
»
1 Y
.
.
h 3
A3
A}
]
1}
\ ]
. d. —
L}
1)
\
]
1 ]
)
e 8 L
KA L L
-l.l.l.l.l.l.l.l.l.I.l.l.l.l.l.l.l-l-l...\~l¢0 LY o
. 9
b —vulhﬂ
Vs !
i}
—~

L 314

Lo

01°0-

$0°0-Q

000

S00

(sur) duny

50

(ur) 3y snIpel Juolj Jooys

"O1S

] 1 i oY




8 "314

(sur) awty, (swr) sawi ],
G b ¢ z _ 0
T _ T T 90°0-
v0'0-
%2
200" o
C
o
000 =5
=
200 S X
w.
£0°0 ~
900 =
- \\ ,.EBF HO\K/ 42070
\ | _ | |




(swr) oy

I9AUPI[I]

C1o-

01°0-

SO0O-

00°0

S00

6 31

(sur) own

G 14 ¢ ré [ 0

T T T I 0
— G
— 0l
— Gl
— 0¢
-~ ¢l
— 0¢

g 1PAUPa[]
IR _ 1 ! st

(W) Y7 snipeld Juolj Jooys

g}




Basalt

Shock speed D (km/s)

| ] i

0 2 4 6

Post-shock particle speed u; (km/s)
Fig. 10

H3




(sur) Quii],
90 S0 ¥0 €0 TO [0 00

£00-

00"

10°0-

000

100

unyjiuue)

131

90 S0 ¥0 ¢£0 <0

(swr) oun]

i

1

{

1

-

unyiuue))

|

1

(W) Y snipel juolj yooys




(Sswr) owrJ,

"L 1 T1 01 80 90 vO0 TO0 _
T T T T _ T — SO0~

000

S00Q

010

eaoqIY)
] | ] ] | ] ] Gl O

21 381

9

[ v'1 T1 01

(sw) ourr

80 90 v0 ¢CO0

1

| |

eHeqIuD

(wr) y sarped yol} Jooys

o




€1 814

(sw) suir, (sw) swr]
9 S 1% £ (4 [ 9 G b ¢ r4 I
J ! ! _ I 1 T T T T T T

00°0 0l

Sl
S0°0
0z
Q
010
ST
S1°0 0¢

(W) Yy snipet juolj YOoys




10

|
O
o

]
-]
Q]

(W) Y snipel juolj Jooys

]
<

Q]

Time (ms)

Fig. Al

-

[N}




40

Shock front radius R (m)

0

Wet Tuff

{ 1

I
2 3 4 5

Time (ms)
Fig. A2

DN




——rr
6 789
10
Shock front radius R (m)
Fig. A3
a9

5

1

U SO W S | 1 Ll Il i A ~
e vy <t ™ (o2] [l *BUS T~ S o [al]

14
() Yt

(s/ury) 'n poads aporred Yooys-1sog




rvyv@ 17T v o0

Wet Tuff

| i ——-

6 789

1
4

| I A T S T § W B |

~e WV T o o ~\C n <
0 .l
1

(s/wry) ‘n paads oponued yooys-1s0d

10
Shock front radius R (m)

60

Fig. A4




Post-shock pressure p, (kbar)

5 6789

4

(eg0) 'd amssaid Yooys-1s04

10
Shock front radius R (m)

Fig. AS
61




Post-shock pressure p, (GPa)

104 : T 1 T ¥ 13 1 4 ¥ r T LB . 105
; a
- Wet Tuff ]

10° 4 10*
™ n
8 i

10° E E 10°
- :

{' “\‘. '{

10' F 110’
: AN
r “ -

. . .

- ® Numerical simulation (100 kt) \‘

| —— Analytical model (this paper) I
----- Heusinkveld model )

) 1 — 1 e ) N S 1 1 1
10° 3 CR S e o 2 3 510
10
Shock front radius R (m)

Fig. A6

62

(reqy) 'd arnssaxd yooys-1s04



Prof. Thomas Ahrens
Seismological Lab, 252-21

Division of Geological & Planetary Sciences

Calitornia Institute of Technology
Pasadena, CA 91125

Prof. Kenud Aki

Center tor Earth Sciences
University of Southern California
Umiversity Park

Fos Angeles, CA 90089-0741

Prof. Shelton Alexander
Geosciences Department

403 Deike Building

The Pennsylvania State University
University Park, PA 16802

Dr. Ralph Alewine, I
DARPA/NMRO

3701 North Fairfax Drive
Arlington, VA 22203-1714

Prof. Charles B. Archambeau
CIRES

University of Colorado
ROHH&‘T, (.‘O 8()309

Dyr. Thomas C. Bache, Jr.
Science Applications Int'l Corp.
10266 Campus Point Drive

San Dicgo, CA 92121 (2 copies)

Prof. Muawia Barazangi

Institute for the Study of the Continent
Cornell University

Ithaca, NY 14853

D Jetf Barker
Deparment of Geological Sciences
State University of New York
at Binghamton
Yestal, NY 13901

Dr. Douglas RO Baumgardt
ENSCO. Ine

3104 Port Royal Road
Seringficid, VA 22151-2388

Dr. Susan Beck
Depaiunent of Geosclences
Ruttding #77

Unmiversity of Anzona
Tuscon, AZ 85721

DISTRUIBUTION LIST

Dr. T.J. Bennett

S-CUBED

A Division of Maxwell Laboratories
11800 Sunrise Valley Drive, Suite 1212
Reston, VA 22091

Dr. Robert Blandford

AFTAC/TT, Center for Seismic Studies
1300 North 17th Street

Suite 1450

Arlington, VA 22209-2308

Dr. G.A. Bollinger

Department of Geological Sciences
Virginia Polytechnical Institute
21044 Derring Hall

Blacksburg, VA 24061

Dr. Stephen Bratt

Center for Seismic Studies
1300 North 17th Street
Suite 1450

Arlington, VA 22209-2308

Dr. Lawrence Burdick
Woodward-Clyde Consultants
566 El Dorado Street
Pasadena, CA 91109-3245

Dr. Robert Burnidge
Schlumberger-Doll Research Center
Old Quarry Road

Ridgefield, CT 06877

Dr. Jerry Carter

Center for Seismic Studies
1300 North 17th Street
Suite 1450

Arlington, VA 22209-2308

Dr. Enc Chael

Division 9241

Sandia Laboratory
Albuquerque, NM 87185

Prof. Vernon F. Cormier

Departnent of Geology & Geophysics
U-45, Room 207

University of Connecticut

Storrs, CT 06268

Prof. Steven Day

Department of Geological Sciences
San Diego State University

San Diego, CA 92182




Marvin Denny

U.S. Department of Energy
Office of Arms Control
Washington, DC 20585

Dr. Zoltan Der

ENSCO, Inc.

5400 Port Royal Road
Springfield, VA 22151-2388

Prof. Adam Dziewonski

Hoffman Laboratory, Harvard University
Dept. of Earth Atmos. & Planetary Sciences
20 Oxford Street

Cambridge, MA 02138

Prof. John Ebel

Department of Geology & Geophysics
Boston College

Chestnut Hill, MA 02167

Enc Fielding
SNEE Hall
INSTOC

Cornell University
Ithaca, NY 14853

Dr. Mark D. Fisk

Mission Research Corporation
735 State Street

P.O. Drawer 719

Santa Barbara, CA 93102

Prof Stanley Flatte

Applied Sciences Building
University of California, Santa Cruz
Santa Cruz, CA 95064

Dr. John Foley

NER-Geo Sciences

1100 Crown Colony Drive
Quincy. MA 02169

Prof. Donald Forsyth

Deparunent of Geological Sciences
Brown University

Providence, RI 02912

Dr. At Frankel

U.S. Geological Survey
922 Natonal Center
Raston, VA 22092

o)

Dr. Cliff Frolich
Institute of Geophysics
8701 North Mopac
Austin, TX 78759

Dr. Holly Given

IGPP, A-025

Scripps Institute of Oceanography
University of California, San Diego
La Jolla, CA 92093

Dr. Jettrey W. Given
SAIC

10260 Campus Point Drive
San Diego, CA 92121

Dr. Dale Glover

Defense Intelligence Agency
ATTN: ODT-1B
Washington, DC 20301

Dr. Indra Gupta
Teledyne Geotech

314 Montgomery Street
Alexanderia, VA 22314

Dan N. Hagedon

Pacific Northwest Laboratones
Battelle Boulevard

Richland, WA 99352

Dr. James Hannon

Lawrence Livermore National Laboratory
P.O. Box 808

L-205

Livermore, CA 94550

Dr. Roger Hansen
HQ AFTAC/TTR
Patrick AFB, FL 32925-6001

Prot. David G. Harkrider

Seismoiogical Laboratory

Division of Geological & Planetary Sciences
California Institute of Technology
Pasadena, CA 91125

Prof. Danny Harvey
CIRES

University of Colorado
Boulder, CO 80309



Donebld Voo Helmberger
senanological Laboratory
srsien of Geological & Planetary Sciences
e Institute of Technology
oceenn O YRS

ot Fuoene Herrin

e for the Study of Earth and Man
Creophvsical Laboratory

Soninen Methodist University

Pridtasn MO 75278

. Robert B Herrmann

Depanmventof Earth & Atmospheric Sciences
stobouts University

Stobouis, MO 63156

Prof. Lane R. Johnson
Seismographic Station
versity of California
chon, CA 94720

as HL Jordan
1t of Earth, Atmospheric &
Ty SCInees
iy insdiute of Technology
A D2139

o Kotk
conertof Geology & Geophvysics
e Cellege

e YOI M 02167

FLoRerr O lsemerant

SO Ine.

LT sy Court
Cevprne ) BLO32G40

giding

GURTRIETT O AAVENUe
2o MASKA

Y A

. ,,'mtz‘\‘t((‘v!"}" M200B

co o MEA BT RO0T3

LR Lamb
sesiny of Hliinois at Urbana-Champaign
Depcomnent of Physices

S st Gireen Street
Conars L 680

Prof. Charles AL Langston
Geosciences Department

403 Deike Building

The Pennsylvania State University
University Park, PA 16802

Jim Lawson, Chief Geophysicist
Oklahoma Geological Survey
Oklahoma Geophysical Observatory
P.O. Box §

[eonard, OK 74043-0008

Prof. Thome Lay

Institute of Tectonics

Earth Science Board

University of California, Santa Cruz
Santa Cruz, CA 95064

Dr. William Leith

U.S. Geological Survey
Mail Stop 928

Reston, VA 22002

Mr. James F. Lewkowicz
Phillips Laboratory/GPEH
Hanscom AFB, MA 01731-5000( 2 copies)

Mr. Alfred Lieberman

ACDA/VI-OA Siate Department Building
Room 5726

320-21st Street, NW

Washington, DC 20451

Prof L. Timothy Long

School of Geophysical Sciences
Georgia Institute of Technology
Atlanta, GA 30332

Dr. Randelph Marun, I

New Fngland Research, Inc.

76 Olcott Dnive

White River Juncuon, VT 05001

Dr. Roberi Masse

Denver Federal Building
Box 25046, Mail Stop 967
Denver, CO 80225

Dr. Gary McCartor
Department of Physics
Southern Methodist University
Dallas, TX 7527




Prof. Thomas V. McEwvilly
Seismographic Staticn
University of California
Berkeley, CA 94720

Dr. Art McGarr

U.S. Geological Survey
Mail Stop 977

U.S. Geological Survey
Menlo Park, CA 94025

Dr. Keith L. McLaughlin
S-CUBED

A Division of Maxwell Laboratory
P.O. Box 1620

La Jolla, CA 92038-1620

Stephen Miller & Dr. Alexander Florence
SRI International

333 Ravenswood Avenue

Box AF 116

Menlo Park, CA 94025-3493

Prof. Bemard Minster

IGPP, A-025

Scripps Insutute of Oceanography
University of California, San Diego
LaJolla, CA 92093

Prot. Brian J. Mitchell

Depantment of Earth & Atmospheric Sciences
St. Louts University

St. Louis, MO 63156

Mr. Jack Murphy

S-CUBED

A Division of Maxwell Laboratory
11%00 Sunrise Valley Drive, Suite 1212
Reston, VA 22091 (2 Copies)

Dr. Keith K. Nakanishi

[Lawrence Livermore National Laboratory
L-025

P.O. Box 50

Livermorg, CA 94550

Dr Carl Newton

Los Alamos National Laboratory
PO Box 1663

Mail Stop €335, Group ESS-3
Los Alamos, NM 37545

Dr. Bao Nguyen
HQ AFTAC/TTR
Patrick AFB. FLL 32925-6001

Prof. John A. Orcutt

IGPP, A-025

Scripps Institute of Oceanography
University of California, San Diego
La Jolla, CA 92093

Prof. Jeffrey Park

Kline Geology Laboratory
P.O. Box 6666

New Haven, CT 06511-8130

Dr. Howard Patton

Lawrence Livermore Natonal Laboratory
L-025

P.O. Box 808

Livermore, CA 94550

Dr. Frank Pilotte
HQ AFTAC/TT
Patrick AFB, FL 32925-6001

Dr. Jay J. Pulli

Radix Systems, Inc.

2 Taft Court, Suite 203
Rockville, MD 20850

Dr. Robert Reinke
ATTN: FCTVTD

Field Command

Defense Nuclear Agency
Kirtland AFB, NM 87115

Prof. Paul G. Richards

Lamont-Doherty Geological Observatory
of Columbia University

Palisades, NY 10964

Mr. Wilmer Rivers
Teledyne Geotech

314 Montgomery Sueet
Alexandria, VA 22314

Dr. George Rothe
HQ AFTAC/TTR
Patrick AFB. FL 32925-6001

Dr. Alan S. Ryall, Jr.
DARPA/NMRO

3701 North Fairfax Drive
Arlington, VA 22209-1714




Dr. Richard Satlor
TASC, Inc.

35 Walkers Brook Drive
Reading, MA 01867

Prot. Charles G. Sammis

Center tor Earth Sciences
University of Southern California
University Park

[ns Angeles, CA 90089-0741

Proi. Christopher H. Scholz

i amont-Doherty Geological Observatory
of Columbia University

Palixades, CA 10964

Dr. Susan Schwartz
[nstitute of Tectonics
1156 High Street

Santa Cruz, CA 95064

Secretary of the Air Force
tSAFRD)
Waskingron, DC 20330

(e of the Secretary of Defense
DiR&E
Washigron, DC 20330

Thomas J. Sereno, Jr.

Science Application Int'l Corp.
10260 Campus Point Drive
San Diego, CA 92121

DeonTchael Shore

Tefenas Nuclear Agency/SPSS
sy felegraph Road
Awandna, VA 22310

v Matthew Sihol

Virgima Tech

Sewological Observatory
4044 Derring Hall
Biacksburg, VA 24061-0420

rof. David G. Simpson
RIS. Inc.

1616 North Fort Myer Drive
Suite 1440
Arlington, VA 22209

Donald L. Springer

Lawrence Livermore National Laboratory
L-025

P.O. Box 808

Livermore, CA 94550

Dr. Jeffrey Stevens

S-CUBED

A Division of Maxwell Laboratory
P.O. Box 1620

LaJolla, CA 92038-1620

Lt. Col. Jim Stobie

ATTN: AFOSR/NL

Bolling AFB

Washington, DC 20332-6448

Prof. Brian Stump

Institute for the Study of Earth & Man
Geophysical Laboratory

Southern Methodist University
Dallas, TX 75275

Prof. Jercmiah Sullivan

University of Illinois at Urbana-Champaign
Deparrment of Physics

1110 West Green Street

Urbana, IL 61801

Prof. L. Sykes

Lamont-Doherty Geological Observatory
of Columbia Univeisity

Palisades, NY 10964

Dr. David Taylor
ENSCO, Inc.

445 Pineda Court
Melbourne, FL 32940

Dr. Steven R. Taylor

Los Alamos National Laboratory
P.O. Box 1663

Mail Stop C335

Los Alamos, NM 87545

Prof. Clifford Thurber

University of Wisconsin-Madison
Department of Geology & Geophysics
1215 West Dayton Street

Madison. WS 53706

Prof. M. Nafi Toksoz
Earth Resources Lab
Massachusetts Institute of Technology

42 Carleton Street
Cambndge, MA 02142




Dr. Larry Tumnbull
CIA-OSWR/NED
Washington, DC 20505

Dr. Gregory van der Vink
IRIS, Inc.

1616 North Fort Myer Drive
Suite 1440

Arlington, VA 22209

Dr. Karl Veith
EG&G

5211 Auth Road
Suite 240

Suitland, MD 20746

Prof. Terry C. Wallace
Department of Geosciences
Building #77

University of Arizona
Tuscon, AZ 85721

Dr. Thomas Weaver

Los Alamos National Laboratory
P.O. Box 1663

Mail Stop C335

Los Alamos, NM 87545

Dr. Wilham Wortman

Mission Research Corporation
8560 Cinderbed Road

Suite 700

Newington, VA 22122

Prof. Francis T. Wu
Department of Geological Sciences
State University of New York
at Binghamton
Vestal, NY 13901

AFTAC/CA
(STINFO)
Patrick AFB. FL. 32925-6001

DARPA/PM
3701 North Fairfax Drive
Arlington, VA 22203-1714

DARPA/RMO/RETRIEVAL
3701 North Fairfax Drive
Arlington, VA 22203-1714

DARPA/RMO/SECURITY OFFICE
3701 North Fairfax Drive
Arlington, VA 22203-1714

HQDNA
ATTN: Technical Library
Washington, DC 20305

Defense Intelligence Agency

Directorate for Scientific & Technical Intelligence
ATTN: DTIB

Washington, DC 20340-6158

Defense Technical Informaton Center
Cameron Station
Alexandria, VA 22314 (2 Copies)

TACTEC

Battelle Memorial Institute

505 King Avenue

Columbus, OH 43201 (Final Report)

Phillips Laboratory
ATTN: XPG
Hanscom AFB, MA 01731-5000

Phillips Laboratory
ATTN: GPE
Hanscom AFB, MA 01731-5000

Phillips Laboratory
ATTN: TSML
Hanscom AFB, MA 01731-5000

Dr. Michel Bouchon
LRI.G.M.-B.P. 68
38402 St. Martin D'Heres
Cedex, FRANCE




Dr. Michel Campillo
(Observatoire de Grenoble
{RI1GM.-BP. 53

RO Grenoble, FRANCE

Dr. Kin Yip Chun
Geophysics Division
Physics Department
University of Toronto
Onsaria, CANADA

Prof. Hans-Peter Harjes
[nsutute for Geophysic

Ruhr University/Bochum
IP0). Box 102148

4630 Bochum 1, GERMANY

Frot. Bvstein Husebye
SNTUNEF/NORSAR

P.O. Box 51

N-2007 Kjeller, NORWAY

David Jepsen

Acting Head, Nuclear Monitoring Section
Burcau of Mincral Resources

Geology and Geophysics

(... Box 378, Canberra, AUSTRALIA

Ms. Eva Johannisson

Seonior Research Officer
sanonad Detense Research Inst.
P.O. Box 27322

S-102 54 Stockholm, SWEDEN

Dr. Peter Marshall

Procurement Executive

Ministry of Defense

Blacknest, Brimpton

Reading FG7-FRS, UNITED KINGDOM

e Berard Massinon, Dr. Pierre Mechler
soceie Radiomana

20 roe Claude Bemard

5005 Punts, FRANCE (2 Copies)

oo Svein Mykkeliveit
NINTNORSAR
0 Box S

N 297 Kjeller. NORWAY (3 Copies)

Prof. Kcith Priestley

University of Cambndge

Bullard Labs, Dept. of Earth Sciences
Madingley Rise, Madingley Road
Cambndge CB3 OEZ, ENGLAND

Dr. Jorg Schlittenhardt

Federal Institute for Geosciences & Nat'l Res.
Postfach 510153

D-3000 Hannover 51, GERMANY

Dr. Johannes Schweitzer
Institute of Geophysics

Ruhr University/Bochum
P.O. Box 1102148

4360 Bochum 1, GERMANY




